化工进展 ›› 2019, Vol. 38 ›› Issue (11): 4978-4990.DOI: 10.16085/j.issn.1000-6613.2019-0065
收稿日期:
2019-01-10
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
马晓莉
作者简介:
刘春晖(1994—),男,硕士研究生,研究方向为化学工程。E-mail:基金资助:
Received:
2019-01-10
Online:
2019-11-05
Published:
2019-11-05
Contact:
Xiaoli MA
摘要:
共价有机框架材料(covalent organic frameworks,COFs)是一类新兴的材料,是一种由有机构筑基元构成并用可逆的共价键进行连接、具有结晶性和周期性的多孔材料。因为这种材料比表面积大、密度低,拥有多样性的结构、优秀的热稳定性及孔道易修饰等优点,越来越受到人们的关注。本文综述了近年来COFs的最新发展动态,将其按照基底材料不同进行分类,介绍COFs在储能、光电、催化、生物医药等方面的应用和发展,包括气体的吸附和存储、材料的光电导性、催化反应进行的性能、手性分离和药物缓控释等;讨论了COFs结构的表征以及相比于其他材料所具有的优越特性。最后指出COFs未来发展趋势是合成具有高度稳定性、结构可控、成本低廉的功能性材料,并对其在实际中的应用前景进行展望。
中图分类号:
刘春晖,马晓莉. 共价有机框架材料的最新进展[J]. 化工进展, 2019, 38(11): 4978-4990.
Chunhui LIU,Xiaoli MA. Latest development of covalent organic frameworks[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4978-4990.
24 | YAGHI O M , URIBE-ROMO F J , HUNT J R , et al . A crystalline imine-linked 3D porous covalent organic framework[J]. Journal of the American Chemical Society, 2009, 131(13): 4570-4571. |
25 | LIN S , DIERCKS C S , ZHANG Y B , et al . Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water[J]. Science, 2015, 349(6253): 1208-1213. |
26 | CHEN C , JOSHI T , LI H F , et al . Local electronic structure of a single-layer porphyrin-containing covalent organic framework[J]. ACS Nano, 2018, 12(1): 385-391. |
27 | MARINESCU S C , JOHNSON E M , HAIGES R . Covalent organic frameworks composed of rhenium bipyridine and metal porphyrins: designing heterobimetallic frameworks with two distinct metal sites[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 37919-37927. |
28 | DICHTEL W R , SMITH B J , OVERHOLTS A C , et al . Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks[J]. Chemical Communications, 2016, 52(18): 3690-3693. |
29 | WAN L J , LIU X H , MO Y P , et al . Isomeric routes to schiff-base single-layered covalent organic frameworks[J]. Small, 2014, 10(23): 4934-4939. |
30 | YAN Y S , FANG Q R , ZHUANG Z B , et al . Designed synthesis of large-pore crystalline polyimide covalent organic frameworks[J]. Nature Communications, 2014, 5: 4503. |
31 | YAGHI O M , WALLER P J , LYLE S J , et al . Chemical conversion of linkages in covalent organic frameworks[J]. Journal of the American Chemical Society, 2016, 138(48): 15519-15522. |
32 | YAN Y S , FANG Q R , GU S , et al . 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis[J]. Angewandte Chemie:International Edition, 2014, 53(11): 2878-2882. |
33 | YAGHI O M , URIBE-ROMO F J , DOONAN C J , et al . Crystalline covalent organic frameworks with hydrazone linkages[J]. Journal of the American Chemical Society, 2011, 133(30): 11478-11481. |
1 | DING S Y , WANG W . Covalent organic frameworks (COFs): from design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568. |
2 | HUANG N , WANG P , JIANG D L . Covalent organic frameworks: a materials platform for structural and functional designs[J]. Nature Reviews Materials, 2016, 1(10): 16068. |
34 | LOTSCH B V , STEGBAUER L , SCHWINGHAMMER K . A hydrazone-based covalent organic framework for photocatalytic hydrogen production[J]. Chemical Science, 2014, 5(7): 2789-2793. |
35 | JIANG D L , JIN E Q , ASADA M , et al . Two-dimensional sp2 carbon-conjugated covalent organic frameworks[J]. Science, 2017, 357(6352): 673-676. |
3 | MA L , WANG S , FENG X , et al . Recent advances of covalent organic frameworks in electronic and optical applications[J]. Chinese Chemical Letters, 2016, 27(8): 1383-1394. |
4 | YAGHI O M , WAN S , GANDARA F , et al . Covalent organic frameworks with high charge carrier mobility[J]. Chemistry of Materials, 2011, 23(18): 4094-4097. |
5 | LIN C Y , ZHANG L P , ZHAO Z H , et al . Design principles for covalent organic frameworks as efficient electrocatalysts in clean energy conversion and green oxidizer production[J]. Advanced Materials, 2017, 29(17): 1606635. |
6 | LI Z T , YU S B , LYU H, et al . A polycationic covalent organic framework: a robust adsorbent for anionic dye pollutants[J]. Polymer Chemistry, 2016, 7(20): 3392-3397. |
7 | LU Q Y , MA Y C , LI H , et al . Postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions[J]. Angewandte Chemie-International Edition, 2018, 57(21): 6042-6048. |
8 | SUN Q , AGUILA B , PERMAN J , et al . Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal[J]. Journal of the American Chemical Society, 2017, 139(7): 2786-2793. |
9 | LEI Z D , YANG Q S , XU Y , et al . Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry[J]. Nature Communications, 2018, 9(1): 576. |
10 | YAN Y S , FANG Q R , WANG J H , et al . 3D porous crystalline polyimide covalent organic frameworks for drug delivery[J]. Journal of the American Chemical Society, 2015, 137(26): 8352-8355. |
11 | YAGHI O M . Reticular chemistry-construction, properties, and precision reactions of frameworks[J]. Journal of the American Chemical Society, 2016, 138(48): 15507-15509. |
12 | FURUKAWA H , CORDOVA K E , O’KEEFFE M , et al . The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 974. |
13 | YAGHI O M , COTE A P , BENIN A I , et al . Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
14 | YAGHI O M , EL-KADERI H M , HUNT J R , et al . Designed synthesis of 3D covalent organic frameworks[J]. Science, 2007, 316(5822): 268-272. |
15 | JIANG D L , WAN S , GUO J , et al . A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation[J]. Angewandte Chemie (International ed. in English), 2009, 48(30): 5439-5442. |
16 | ZHANG W , DU Y , YANG H S , et al . Ionic covalent organic frameworks with spiroborate linkage[J]. Angewandte Chemie-International Edition, 2016, 55(5): 1737-1741. |
17 | LI Y W , YANG R T . Hydrogen storage in metal-organic and covalent[J]. AIChE Journal, 2008, 54(1): 269-279. |
18 | LANNI L M , TILFORD R W , BHARATHY M , et al . Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks[J]. Journal of the American Chemical Society, 2011, 133(35): 13975-13983. |
19 | THOMAS A , KUHN P , ANTONIETTI M . Porous, covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angewandte Chemie (International ed. in English), 2008, 47(18): 3450-3453. |
20 | ANTONIETTI M , BOJDYS M J , JEROMENOK J , et al . Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity[J]. Advanced Materials, 2010, 22(19): 2202-2205. |
21 | CHAN-THAW C E , VILLA A , PRATI L , et al . Triazine-based polymers as nanostructured supports for the liquid-phase oxidation of alcohols[J]. Chemistry: A European Journal, 2011, 17(3): 1052-1057. |
22 | LAN X , DU C , CAO L , et al . Ultrafine Ag nanoparticles encapsulated by covalent triazine framework nanosheets for CO2 conversion[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 38953-38962. |
23 | ALIJANI S , SHAHVAR A , SOLTANI R , et al . Covalent triazine-based framework for micro solid-phase extraction of parabens[J]. Journal of Chromatography A, 2018, 1565: 48-56. |
36 | TRABOLSI A , DAS G, SKORJANC T , et al . Viologen-based conjugated covalent organic networks via zincke reaction[J]. Journal of the American Chemical Society, 2017, 139(28): 9558-9565. |
37 | ROESER J , PRILL D , BOJDYS M J , et al . Anionic silicate organic frameworks constructed from hexacoordinate silicon centres[J]. Nature Chemistry, 2017, 9(10): 977-982. |
38 | DICHTEL W R , DEBLASE C R , SILBERSTEIN K E , et al . Beta-ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage[J]. Journal of the American Chemical Society, 2013, 135(45): 16821-16824. |
39 | MU Y , LI Z P , ZHI Y F , et al . An azine-linked covalent organic framework: synthesis, characterization and efficient gas storage[J]. Chemistry: A European Journal, 2015, 21(34): 12079-12084. |
40 | MU Y , LIU X M , LI Z P , et al . A robust and luminescent covalent organic framework as a highly sensitive and selective sensor for the detection of Cu2+ ions[J]. Chemical Communications, 2016, 52(39): 6613-6616. |
41 | BANERJEE R , KANDAMBETH S , BISWAL B P , et al . Selective molecular sieving in self-standing porous covalent organic framework membranes[J]. Advanced Materials, 2017, 29(2): 1603945. |
42 | GRAETZ J . New approaches to hydrogen storage[J]. Chemical Society Reviews, 2009, 38(1): 73-82. |
43 | FURUKAWA H , YAGHI O M . Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications[J]. Journal of the American Chemical Society, 2009, 131(25): 8875-8883. |
44 | CAO D P , LAN J H , WANG W C , et al . Lithium-doped 3D covalent organic frameworks: high-capacity hydrogen storage materials[J]. Angewandte Chemie (International ed. in English), 2009, 48(26): 4730-4733. |
45 | SCHMIDT J , PACHFULE P , ACHARJYA A , et al . Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation[J]. Journal of the American Chemical Society, 2018, 140(4): 1423-1427. |
46 | COOPER A I , WANG X Y , CHEN L J , et al . Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water[J]. Nature Chemistry, 2018, 10(12): 1180-1189. |
47 | FURUKAWA H , KO N, GO Y B, et al . Ultrahigh porosity in metal organic frameworks[J]. Science, 2010, 329(5990): 424-428. |
48 | MA S Q , SUN D F , SIMMONS J M , et al . Metal organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake[J]. Journal of the American Chemical Society, 2008, 130(3): 1012-1016. |
49 | WANG W C , LAN J H , CAO D P . High uptakes of methane in Li-doped 3D covalent organic frameworks[J]. Langmuir, 2010, 26(1): 220-226. |
50 | BANERJEE R , FURUKAWA H , BRITT D , et al . Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties[J]. Journal of the American Chemical Society, 2009, 131(11): 3875-3877. |
51 | XU X C , SONG C S , ANDRÉSEN J M , et al . Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41[J]. Microporous Mesoporous Materials, 2003, 62(1): 29-45. |
52 | MILLWARD A R , YAGHI O M . Metal organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. Journal of the American Chemical Society, 2005, 127(51): 17998-17999. |
53 | LAN J H , CAO D P , WANG W C , et al . Doping of alkali, alkaline-earth, and transition metals in covalent organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations[J]. ACS Nano, 2010, 4(7): 4225-4237. |
54 | CHOI Y J , CHOI J H , CHOI K M , et al . Covalent organic frameworks for extremely high reversible CO2 uptake capacity: a theoretical approach[J]. Journal of Materials Chemistry, 2011, 21(4): 1073-1078. |
55 | JIANG D L , DING X S , CHEN L , et al . An n-channel two-dimensional covalent organic framework[J]. Journal of the American Chemical Society, 2011, 133(37): 14510-14513. |
56 | JIANG D L , FENG X , CHEN L , et al . Porphyrin-based two-dimensional covalent organic frameworks: synchronized synthetic control of macroscopic structures and pore parameters[J]. Chemical Communications, 2011, 47(7): 1979-1981. |
57 | JIANG Z Y , LI Y , WU H , et al . Fabrication of nafion/zwitterion-functionalized covalent organic framework composite membranes with improved proton conductivity[J]. Journal of Membrane Science, 2018, 568: 1-9. |
58 | ZWIJNENBURG M A , BUTCHOSA C , MCDONALD T O , et al . Shining a light on s-triazine-based polymers[J]. Journal of Physical Chemistry C, 2014, 118(8): 4314-4324. |
59 | LOTSCH B V , STEGBAUER L , ZECH S , et al . Tailor-made photoconductive pyrene-based covalent organic frameworks for visible-light driven hydrogen generation[J]. Advanced Energy Materials, 2018, 8(24): 1703278. |
60 | MAI Y Y, LIU S , YAO L , et al . All-organic covalent organic framework/polyaniline composites as stable electrode for high-performance supercapacitors[J]. Materials Letters, 2019, 236: 354-357. |
61 | BANERJEE R , KHAYUM A M , VIJAYAKUMAR V , et al . Convergent covalent organic framework thin sheets as flexible supercapacitor electrodes[J]. ACS Applied Materials & Interfaces, 2018, 10(33): 28139-28146. |
62 | DING S Y , GAO J , WANG Q , et al . Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction[J]. Journal of the American Chemical Society, 2011, 133(49): 19816-19822. |
63 | CAO J J , LIU J L , HU Y J . Covalent triazine-based frameworks as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. Catalysis Communications, 2015, 66: 91-94. |
64 | GAO Y N , DONG B , WANG L Y , et al . Immobilization of ionic liquids to covalent organic frameworks for catalyzing the formylation of amines with CO2 and phenylsilane[J]. Chemical Communications, 2016, 52(44): 7082-7085. |
65 | BANERJEE R , PACHFULE P , PANDA M K , et al . Multifunctional and robust covalent organic framework-nanoparticle hybrids[J]. Journal of Materials Chemistry A, 2014, 2(21): 7944-7952. |
66 | CHEN L G , MU M M , WANG Y W , et al . Two-dimensional imine-linked covalent organic frameworks as a platform for selective oxidation of olefins[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 22856-22863. |
67 | WEN Z H , WANG Y S , CHEN J X , et al . Perfluorinated covalent triazine framework derived hybrids for the highly selective electroconversion of carbon dioxide into methane[J]. Angewandte Chemie: International Edition, 2018, 57(40): 13120-13124. |
68 | TAN B , PAN J Q , GUO L P , et al . Embedding carbon nitride into a covalent organic framework with enhanced photocatalysis performance[J]. Chemistry: An Asian Journal, 2018, 13(13): 1674-1677. |
69 | BANERJEE R , MITRA S , SASMAL H S , et al . Targeted drug delivery in covalent organic nanosheets (CONs) via sequential postsynthetic modification[J]. Journal of the American Chemical Society, 2017, 139(12): 4513-4520. |
70 | BHAUMIK A , BHANJA P , MISHRA S , et al . Covalent organic framework material bearing phloroglucinol building units as a potent anticancer agent[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31411-31423. |
71 | LIU Z Y , YAN X , SONG Y P , et al . Two-dimensional porphyrin-based covalent organic framework: a novel platform for sensitive epidermal growth factor receptor and living cancer cell detection[J]. Biosensors & Bioelectronics, 2018, 126: 734-742. |
72 | ZHAO Y L , BAI L Y , PHUA S Z F , et al . Nanoscale covalent organic frameworks as smart carriers for drug delivery[J]. Chemical Communications, 2016, 52(22): 4128-4131. |
73 | AJAYAGHOSH A , MAL A, MISHRA R K , et al . Supramolecular reassembly of self-exfoliated ionic covalent organic nanosheets for label-free detection of double-stranded DNA[J]. Angewandte Chemie-International Edition, 2018, 57(28): 8443-8447. |
74 | MA S Q , ZHANG S N , ZHENG Y L , et al . Covalent organic frameworks with chirality enriched by biomolecules for efficient chiral separation[J]. Angewandte Chemie (International ed. in English), 2018, 57: 16754-16759 |
75 | LANG K , HYNEK J , ZELENKA J , et al . Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria[J]. ACS Applied Materials & Interfaces, 2018, 10(10): 8527-8535. |
76 | WANG Z , WANG X L , MA R Y , et al . Mechanochemical synthesis of covalent organic framework for the efficient extraction of benzoylurea insecticides[J]. Journal of Chromatography A, 2018, 1551: 1-9. |
77 | YAN X P , QIAN H L , DAI C , et al . High-crystallinity covalent organic framework with dual fluorescence emissions and its ratiometric sensing application[J]. ACS Applied Materials & Interfaces, 2017, 9(29): 24999-25005. |
78 | WANG S , LONG C , HE L W , et al . Covalent organic framework functionalized with 8-hydroxyquinoline as a dual-mode fluorescent and colorimetric pH sensor[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 15364-15368. |
79 | SALONEN L M , MELLAH A , FERNANDES S P S , et al . Adsorption of pharmaceutical pollutants from water using covalent organic frameworks[J]. Chemistry:A European Journal, 2018, 24(42): 10601-10605. |
80 | FENG Y Q , WANG R Q , WEI X B . Beta-cyclodextrin covalent organic framework for selective molecular adsorption[J]. Chemistry:A European Journal, 2018, 24(43): 10979-10983. |
81 | WANG B , ZHANG Y Y , DUAN J Y , et al . Three-dimensional anionic cyclodextrin-based covalent organic frameworks[J]. Angewandte Chemie: International Edition, 2017, 56(51): 16313-16317. |
82 | BANERJEE R , KANDAMBETH S , MALLICK A , et al . Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route[J]. Journal of the American Chemical Society, 2012, 134(48): 19524-19527. |
83 | JIANG D L , YANG W , HONG X , et al . A π-electronic covalent organic framework catalyst: π-walls as catalytic beds for Diels-Alder reactions under ambient conditions[J]. Chemical Communications, 2015, 51(50): 10096-10098. |
84 | BANERJEE R , PRADIP P , SHARATH K , et al . Hollow tubular porous covalent organic framework (COF) nanostructures[J]. Chemical Communications, 2015, 51(58): 11717-11720. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[3] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[4] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[5] | 史柯柯, 刘木子, 赵强, 李晋平, 刘光. 镁基储氢材料的性能及研究进展[J]. 化工进展, 2023, 42(9): 4731-4745. |
[6] | 刘木子, 史柯柯, 赵强, 李晋平, 刘光. 固体储氢材料的研究进展[J]. 化工进展, 2023, 42(9): 4746-4769. |
[7] | 向硕, 卢鹏, 石伟年, 杨鑫, 何燕, 朱立业, 孔祥微. 二维WS2纳米片的规模化可控制备及其摩擦学性能[J]. 化工进展, 2023, 42(9): 4783-4790. |
[8] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[9] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[10] | 吕杰, 黄冲, 冯自平, 胡亚飞, 宋文吉. 基于余热回收的燃气热泵性能及控制系统[J]. 化工进展, 2023, 42(8): 4182-4192. |
[11] | 陈森, 殷鹏远, 杨证禄, 莫一鸣, 崔希利, 锁显, 邢华斌. 功能固体材料智能合成研究进展[J]. 化工进展, 2023, 42(7): 3340-3348. |
[12] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[13] | 任建鹏, 吴彩文, 刘慧君, 吴文娟. 木质素-聚苯胺复合材料的制备及对刚果红的吸附[J]. 化工进展, 2023, 42(6): 3087-3096. |
[14] | 徐国彬, 刘洪豪, 李洁, 郭家奇, 王琪. ZnO量子点水性喷墨荧光墨水制备及性能[J]. 化工进展, 2023, 42(6): 3114-3122. |
[15] | 毛梦雷, 孟令玎, 高蕊, 孟子晖, 刘文芳. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |