[1] RAHMAN M, SAMANTA A, GUPTA R. Production and characterization of ash-free coal from low-rank Canadian coal by solvent extraction[J]. Fuel Processing Technology, 2013, 115:88-98.
[2] BLESSING J E, ROSS D S. Supercritical solvents and the dissolution of coal and lignite[C]//LARSEN J. Organic chemistry of coal. ACS Symposium Series, 1978, 71:171-182.
[3] 李显, 朱贤青, 肖黎, 等. 酸洗脱灰及离子交换对低阶煤热溶剂提质分离的影响[J]. 燃料化学学报, 2014, 42(8):897-904. LI Xian, ZHU Xianqing, XIAO Li, et al. Degradative solvent extraction of demineralized and ion-exchanged low-rank coals[J]. Journal of Fuel Chemistry and Technology, 2014, 42(8):897-904.
[4] MIURA K, SHIMADA M, MAE K, et al. Extraction of coal below 350℃ in flowing non-polar solvent[J]. Fuel, 2011, 80(11):1573-1582.
[5] TAKANOHASHI T, SHISHIDO T, SAITO I. Effects of hyper-coal addition on coke strength and thermoplasticity of coal blends[J]. Energy & Fuels, 2008, 22(3):1779-1783.
[6] OKUYAMA N, KOMATSU N, SHIGEHISA T, et al. Hyper-coal process to produce the ash-free coal[J]. Fuel Processing Technology, 2004, 85(8/9/10):947-967.
[7] LI C, TAKANOHASHI T, YOSHIDA T, et al. Effect of acid treatment on thermal extraction yield in ashless coal production[J]. Fuel, 2004, 83(6):727-732.
[8] ASHIDA R, MORIMOTO M, MAKINO Y, et al. Fractionation of brown coal by sequential high temperature solvent extraction[J]. Fuel, 2009, 88(8):1485-1490.
[9] 石智杰, 张胜振, 邢凌燕. 低阶煤在煤液化衍生油中的热萃取性能研究[J]. 煤炭转化, 2009, 32(1):34-39. SHI Zhijie, ZHANG Shengzhen, XING Lingyan. Thermal extraction behavior of low rank coal in the coal derived liquids[J]. Coal Conversion, 2009, 32(1):34-39.
[10] KASHIMURA N, TAKANOHASHI T, MASAKI K, et al. Relationship between thermal extraction yield and oxygen-containing functional groups[J]. Energy & Fuels, 2006, 20(5):2088-2092.
[11] KAWASHIMA H, KOYANO K, TAKANOHASHI T. Changes in nitrogen functionality due to solvent extraction of coal during HyperCoal production[J]. Fuel Processing Technology, 2013, 106:275-280.
[12] MIURA K, MAE K, SHINDO H, et al. Extraction of low rank coals by coal derived oils at 350℃ for producing clean fuels[J]. Journal of Chemical Engineering of Japan, 2003, 36(7):742-750.
[13] OKUYAMA N, KOMATSU N, SHIGEHISA T, et al. Hyper-coal process to produce the ash-free coal[J]. Fuel Processing Technology, 2004, 85(8/9/10):947-967.
[14] YOSHIDA T, TAKANOHASHI T, SAKANISHI K, et al. Relationship between thermal extraction yield and softening temperature for coals[J]. Energy & Fuels, 2002, 16(4):1006-1007.
[15] TAKANOHASHI T, SHISHIDO T, KAWASHIMA H, et al. Characterisation of HyperCoals from coals of various ranks[J]. Fuel, 2008, 87(4/5):592-598.
[16] MASAKI K, KASHIMURA N, TAKANOHASHI T, et al. Effect of pretreatment with carbonic acid on "HyperCoal" (ash-free coal) production from low-rank coals[J]. Energy & Fuels, 2005, 19(5):2021-2025.
[17] YOSHIDA T, LI C, TAKANOHASHI T, et al. Effect of extraction condition on "HyperCoal" production (2)-effect of polar solvents under hot filtration[J]. Fuel Processing Technology, 2004, 86(1):61-72.
[18] SHUI H F, ZHOU Y, LI H P, et al. Thermal dissolution of Shenfu coal in different solvents[J]. Fuel, 2013, 108:385-390.
[19] MASAKI K, YOSHIDA T, LI C, et al. The effects of pretreatment and the addition of polar compounds on the production of HyperCoal from subbituminous coals[J]. Energy & Fuels, 2004, 18(4):995- 1000.
[20] YOSHIDA T, TAKANOHASHI T, SAKANISHI K, et al. The effect of extraction condition on "HyperCoal" production (1) -under room-temperature filtration[J]. Fuel, 2002, 81(11/12):1463-1469.
[21] MIURA K, NAKAGAWA H, ASHIDA R, et al. Production of clean fuels by solvent skimming of coal at around 350℃[J]. Fuel, 2004, 83(6):733-738.
[22] KASHIMURA N, TAKANOHASHI T, SAITO I. Upgrading the solvent used for the thermal extraction of sub-bituminous coal[J]. Energy & Fuels, 2006, 20(5):2063-2066.
[23] LI Z K, WEI X Y, YAN H L, et al. Advances in lignite extraction and conversion under mild conditions[J]. Energy & Fuels, 2015, 29(11):6869-6886.
[24] LEI Z P, CHENG L L, ZHANG S F, et al.Dissolution performance of coals in ionic liquid 1-butyl-3-methyl-imidazolium chloride[J]. Fuel Processing Technology, 2015, 129:222-226.
[25] 唐帅. 煤热解萃取及萃取产物对单种煤成焦性能影响的研究[D]. 鞍山:辽宁科技大学, 2013. TANG Shuai. Study on pyrolytic extraction of coal and extraction product on the coking performances from single coal[D]. Anshan:University of Science and Technology Liaoning, 2013.
[26] SHUI H F, ZHAO W J, SHAN C J, et al. Caking and coking properties of the thermal dissolution soluble fraction of a fat coal[J]. Fuel Processing Technology, 2014, 118:64-68.
[27] 单传俊. 肥煤的热溶及其物在炼焦配中应用[D]. 马鞍山:安徽工业大学, 2012. SHAN Chuanjun. Thermal extraction of rich coal and application of the extract in coal blending for coke-making[D]. Ma'anshan:Anhui University of Technology, 2012.
[28] SHUI H F, HE F, WU Y, et al. Study on the use of the thermal dissolution soluble fraction from Shenfu sub-bituminous coal in coke-making coal blends[J]. Energy & Fuels, 2015, 29(3):1558- 1563.
[29] TAKANOHASHI T, OHKAWA T, YANAGIDA T, et al. Effect of maceral composition on the extraction of bituminous coals with carbon disulphide-N-methyl-2-pyrrolidinone mixed solvent at room temperature[J]. Fuel, 1993, 72(1):51-55.
[30] VAN KREVELEN D W. Coal:typology-chemistry-physics- constitution[M]. Elsevier, Amsterdam; 1981:Chapter 10.
[31] OTAKE Y, SUUBERG E M. Temperature dependence of solvent swelling and diffusion processes in coals[J]. Energy & Fuels, 1997, 11(6):1155-1164.
[32] TAKANOHASHI T, YOSHIDA T, KAWASHIMA H. Molecular simulation of relaxation behaviors of coal-aggregated structures[J]. Fuel Processing Technology, 2002, 77/78:53-60.
[33] OPAPRAKASIT P, SCARONI A W, PAINTER P C. Ionomer-like structure and cation interactions in argonne premiums coals[J]. Energy & Fuels, 2002, 16(3):543-551.
[34] KASHIMURA N, TAKANOHASHI T, SAITO I. Effect of noncovalent bonds on the thermal extraction of subbituminous coals[J]. Energy & Fuels, 2006, 20(4):1605-1608.
[35] SHUI H F, WANG Z C, WANG G Q. Effect of hydrothermal treatment on the extraction of coal in the CS2/NMP mixed solvent[J]. Fuel, 2006, 85(12/13):1798-1802.
[36] SHUI H F, LI H P, CHANG H T, et al. Modification of sub-bituminous coal by steam treatment:caking and coking properties[J]. Fuel Processing Technology, 2011, 92(12):2299-2304.
[37] ⅡNO M, TAKANOHASHI T, LI C, et al. Increase in extraction yields of coals by water treatment[J]. Energy & Fuels, 2004, 18(5):1414-1418.
[38] HALL P J, THOMAS K M, MARSH H. The relation between coal macromolecular structure and solvent diffusion mechanisms[J]. Fuel, 1992, 71(11):1271-1275.
[39] 叶鹏超. 锡林郭勒褐煤的热溶及其热溶物的配煤炼焦研究[D].马鞍山:安徽工业大学, 2016. YE Pengchao. Study on the properties of the thermal dissolution of Xilinguole lignite and the use of their TDSFs in the coal blending for coke-making[D]. Ma'anshan:Anhui University of Technology, 2016.
[40] OKUYAMA N, KOMATSU N, SHIGEHISA T. Study on the hyper-coal process for brown coal upgrading[J]. Coal Preparation, 2005, 25:295-311.
[41] 李祥, 秦志宏, 卜良辉, 等. 炼焦煤的官能团结构分析及其黏结性产生机理[J]. 燃料化学学报, 2016, 44(4):385-393. LI Xiang, QIN Zhihong, BU Lianghui, et al. Structural analysis of functional group and mechanism investigation of caking property of coking coal[J]. Journal of Fuel Chemistry and Technology, 2016, 44(4):385-393.
[42] TAKANOHASHI T, SHISHIDO T, SAITO I. Effects of hyper-coal addition on coke strength and thermoplasticity of coal blends[J]. Energy &Fuel, 2008, 22(3):1779-1783.
[43] 朱亚明, 唐帅, 赵雪飞, 等. 长焰煤热解萃取物对单种煤成焦性的影响[J]. 燃料与化工, 2014, 47(1):1-3. ZHU Yaming, TANG Shuai, ZHAO Xuefei, et al. Influence of pyrolytic extracts of long flame coal to the coking properties of individual coal[J]. Fuel & Chemical Processes, 2014, 47(1):1-3.
[44] NTSHIBATA Y, MATSUDAIRA K, NISHIMURA M, et al. Effect of HyperCoal addition to coal on coke quality[C]//ICSTI. 2006:640-643. |