化工进展 ›› 2018, Vol. 37 ›› Issue (04): 1516-1521.DOI: 10.16085/j.issn.1000-6613.2017-1247

• 材料科学与技术 • 上一篇    下一篇

纳米晶硅多层薄膜的低温调控及其发光特性

李云1, 高东泽1, 焦玉骁1, 张博惠1, 许贺菊1,2, 赵蔚1,3, 于威1, 路万兵1, 李晓苇1   

  1. 1 河北大学物理科学与技术学院, 河北 保定 071000;
    2 华北理工大学理学院, 河北 唐山 063009;
    3 河北工程大学数理学院, 河北 邯郸 056038
  • 收稿日期:2017-06-21 修回日期:2017-11-18 出版日期:2018-04-05 发布日期:2018-04-05
  • 通讯作者: 于威,教授,研究方向为太阳能电池材料与器件;路万兵,教授,研究方向为光电功能材料与器件。
  • 作者简介:李云(1986-),女,博士研究生。
  • 基金资助:
    国家自然科学基金青年基金(61504036),河北省自然科学基金青年基金(A2016201087),河北省科技计划(13214315),国家自然科学基金(11504078)及河北省高等学校科学技术研究项目(Z2015121)。

Low temperature preparation and luminescence properties of nanocrystalline silicon multilayer films

LI Yun1, GAO Dongze1, JIAO Yuxiao1, ZHANG Bohui1, XU Heju1,2, ZHAO Wei1,3, YU Wei1, LU Wanbing1, LI Xiaowei1   

  1. 1 College of Physics Science and Technology, Hebei University, Baoding 071000, Hebei, China;
    2 College of Science, North China University of Science and Technology, Tangshan 063009, Hebei, China;
    3 School of Science, Hebei University of Engineering, Handan 056038, Hebei, China
  • Received:2017-06-21 Revised:2017-11-18 Online:2018-04-05 Published:2018-04-05

摘要: 采用单-双靶交替溅射法低温沉积了纳米晶硅多层薄膜(nc-SiOx/a-SiOx),通过改变a-SiOx势垒层的厚度和化学成分比例,实现了纳米晶硅多层薄膜的低温过程控制。透射电子显微镜(TEM)结果显示,a-SiOx层太薄,不能有效阻断纳米硅生长,导致多层周期结构在后期沉积过程中受到破坏;增加a-SiOx层厚度,周期性结构生长得以实现,但仍有部分纳米硅穿透a-SiOx势垒层;傅里叶变换红外光谱(FTIR)分析表明,薄膜中的氧化反应以及活性氢对物相分离过程的促进作用均对纳米硅生长有影响。进而增加a-SiOx层氧含量,纳米硅的纵向生长被成功阻断。在此基础上,通过调整nc-SiOx层厚度实现了薄膜光学带隙调整和纳米硅粒度控制。光吸收谱分析显示,随nc-SiOx层厚度的增加,薄膜光学带隙逐渐减小;光致发光谱表明,多层周期结构实现了纳米硅尺寸的调控,粒子尺寸为几个纳米的纳米硅表现出了较强的发光,发光机制为量子限制效应-缺陷态复合发光。

关键词: 纳米晶硅, 多层薄膜, 显微结构, 低温过程控制, 纳米粒子, 光致发光

Abstract: The nanocrystalline silicon multilayers(nc-SiOx/a-SiOx) were deposited at low temperature by single-double target alternating sputtering technology. The thickness and the chemical composition of the a-SiOx barrier layers were regulated to control the multilayers' microstructure. Transmission electron microscopy(TEM) analysis showed that the periodic structure was disrupted during the later deposition process because the a-SiOx layer was too thin to effectively block the growth of nc-Si. The multilayer structure was successfully prepared by increasing the thickness of the a-SiOx layer,however,there were still a part of nc-Si particles penetrating the barrier layer. Fourier transform infrared(FTIR) spectra showed that the oxidation reaction in the film and the active hydrogen atom effected on the growth of nc-Si. Therefore,the oxygen content of the a-SiOx layer was increased which further blocked the growth of the nc-Si. Then,the film optical bandgap was adjusted and nc-Si particles size was controlled by regulating the thickness of nc-SiOx layer. The absorption spectra showed that the optical bandgap of the film decreased with the increase of the nc-SiOx layer thickness. The photoluminescence(PL) spectra showed that the multilayer structure was regulated by controlling nc-SiOx layer thickness,and the resultant nc-Si with several nanometer produced a strong luminescence,which was attributed to a complex quantum confinement effect and the defect state luminescence mechanism.

Key words: nanocrystalline silicon, multilayers, microstructure, low temperature process control, nanoparticles, photoluminescence

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn