[1] ALVES L, MEDRONHO B, ANTUNES F E, et al. Dissolution state of cellulose in aqueous system. 2.Acidic solvents[J]. Carbohydrate Polymers, 2016, 151:707-715.
[2] ADSUL M, SONIC S K, BHARGAVA S K. Facile approach for the dispersion of regenerated cellulose in aqueous system in the form of nanoparticles[J]. Biomacromolecules, 2013, 13(9):2890-2895.
[3] YANG Y,GYO Y Z,SUN R C. Self-assembly and β-carotene loading capacity of hydroxyethyl cellulose-graft-linoleic acid nanomicelles[J]. Carbohydrate Polymers, 2016, 145:56-63.
[4] 罗成成,王晖,陈勇. 纤维素的改性及应用研究进展[J]. 化工进展, 2015, 34(3):767-783. LUO Chengcheng, WANG Hui, CHEN Yong. Progress in modification of cellulose and application[J]. Chemical Industry and Engineering Progress, 2015, 34(3):767-783.
[5] FU F Y, GU J Y, XU X Y. Interfacial assembly of ZnO-cellulose nanocomposite films via a solution process:a one-step biomimetic approach and excellent photocatalytic properties[J]. Cellulose, 2017, 24(1):147-162.
[6] WANG M, GE H, SONG J H, et al. Solid-state NMR study on the dynamics of thermo-sensitive cellulose/poly (N-isopropylacrylamide) composite hydrogel[J]. Chemical Journal of Chinese Universities, 2015, 36(7):1422-1430.
[7] CHAHAL S, HUSSAIN F S J, YUSOFF M M, et al. Nanohydroxyapatite-coated hydroxyethyl cellulose/poly(vinyl) alcohol electrospun scaffolds and their cellular response[J]. International Journal of Polymeric Materials, 2017, 66(3):115-122.
[8] 高艳红,石瑜,田超,等. 微纤化纤维素及其制备技术的研究进展[J]. 化工进展, 2017, 36(1):232-246. GAO Yanhong, SHI Yu, TIAN Chao, et al. Properties and preparation progress of microfibrillated cellulose:a review[J]. Chemical Industry and Engineering Progress, 2017, 36(1):232-246.
[9] HUANG L Q, YE Z B, BERRY R. Modification of cellulose nanocrystals with quaternary ammonium-containing hyperbranched polyethylene ionomers by ionic assembly[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9):4937-4950.
[10] 马东卓,祝宝东,王鉴,等. 纤维素基高吸水材料研究进展[J]. 化工进展, 2014, 33(7):1786-1790. MA Dongzhuo, ZHU Baodong, WANG Jian, et al. Research progress in cellulose-based super absorbent material[J]. Chemical Industry and Engineering Progress, 2014, 33(7):1786-1790.
[11] SONG Y B, ZHOU Y, CHEN L Y. Wood cellulose-based polyelectrolyte complex nanoparticles as protein carriers[J]. Journal of Materials Chemistry, 2012, 22(6):2512-2519.
[12] CHEN N S, TONG Z H, YANG W H, et al. Biocomposites with tunable properties from poly(lactic acid)-based copolymers and carboxymethyl cellulose via ionic assembly[J]. Carbohydrate Polymers, 2015, 128:122-129.
[13] XIN T T, YUAN T, XIAO S, et al. Synthesis of cellulose-graft-poly(methyl methacrylate) via homogeneous ATRP[J]. Bioresources, 2011, 6(3):2941-2953.
[14] GUO Y Z, WANG X H, LI D, et al. Synthesis and characterization of hydrophobic long-chain fatty acylated cellulose and its self-assembled nanoparticles[J]. Polymer Bulletin, 2012, 69(4):389-403.
[15] CINTRON M S. Professor Lina ZHANG wins the 2011 nselme Payen award of the division of cellulose and renewable materials[J]. Cellulose, 2011, 18(4):857-858.
[16] 卢生昌,巫龙辉,林新兴,等. ATRP法均相改性纤维素的研究进展[J]. 纤维素科学与技术, 2016, 24(4):56-67. LU Shengchang, WU Longhui, LIN Xinxing, et al. Progress in cellulose modification under homogeneous reaction condition via ATRP[J]. Journal of Cellulose Science and Technology, 2016, 24(4):56-67.
[17] 叶代勇, 黄洪, 傅和青. 纤维素化学研究进展[J]. 化工学报, 2006, 57(8):1782-1791. YE Daiyong, HUANG Hong, FU Heqing. Advances in cellulose chemistry[J]. CIECS Journal, 2006, 57(8):1782-1791.
[18] 方云,赖中宇,庞萍萍,等. 部分水解聚丙烯酰胺-羟乙基纤维素的水相pH响应性自组装[J],物理化学学报, 2011, 27(7):1712-1718. FANG Yun, LAI Zhongyu, PANG Pingping, et al. pH responsive self-assembly of HPAM-HEC in aqueous solution[J]. Acta Physico-Chimica Sinica, 2011, 27(7):1712-1718.
[19] 刘志明,吴鹏. 壳聚糖/纤维素气凝胶球的制备及其甲醛吸附性能[J]. 林产化学与工业, 2017, 37(1):27-35. LIU Zhiming, WU Peng. Preparation of chitosan/cellulose aerogel beads and its formaldehyde gas adsorption performance[J]. Chemistry and Industry of Forest Products, 2017, 37(1):27-35.
[20] 王小慧,徐曼曼,孙润仓. 高性能石墨烯/纤维素自组装复合水凝胶和气凝胶及其制备方法:105061782.A[P]. 2015-11-18. WANG Xiaohui, XU Manman, SUN Runcang. Preparation of high performance graphene/cellulose self-assembled composite hydrogel and gasgel:105061782.A[P]. 2015-11-18.
[21] ZHANG S W, LIU W T, LIANG J, et al. Buildup mechanism of carboxymethyl cellulose and chitosan self-assembled films[J]. Cellulose, 2013, 20(3):1135-1143.
[22] XIE Y L, WANG M J, YAO S J. Preparation and characterization of biocompatible microcapsules of sodium cellulose sulfate/chitosan by means of layer-by-layer self assemble[J]. Langmuir, 2009, 25(16):8999-9005.
[23] GUO Y Z, ZHANG L, LI H M. Self-assembly and paclitaxel loading capacity of α-tocopherol succinate-conjugated hydroxyethyl cellulose nanomicelle[J]. Colloid and Polymer Science, 2016, 294(1):135-143.
[24] WEI Y, CHENG F, HOU G, et al. Amphiphilic cellulose:surface activity and aqueous self-assembly into nano-sized polymeric micelles[J]. Reactive and Functional Polymers, 2008, 68(5):981-989.
[25] SONG Y B, ZHANG L Z, GAN W P. Self-assembled micelles based on hydrophobically modified quaternized cellulose for drug delivery[J]. Colloids and Surfaces B:Biointerfaces, 2011, 83(2):313-320.
[26] YOSHIRO T, MIZUKI S, SHIGEO T. Self-assembled nanogels of cholesterol-bearing hydroxypropyl cellulose:a thermoresponsive building block for nanogel tectonic materials[J]. Langmuir, 2016, 32(47):12283-12289.
[27] BAGHERI M, SHATERI S. Synthesis and characterization of novel liquid crystalline cholesteryl-modified hydroxypropyl cellulose derivatives[J]. Journal of Polymer Research,2012,19(3):9841-9853.
[28] MENG T, GAO X, ZHANG J, et al. Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose[J]. Polymer, 2009, 50(2):447-454.
[29] 赵忠奎, 刘柬葳. 离子液体中ATRP法合成MCC-g-PGMA分子及其组装研究[J]. 河北工业科技, 2015, 32(5):390-395. ZHAO Zhongkui,LIU Jianwei. Synthesis of MCC-g-PGMA by ATRP in ionic liquids and its self-assemble[J]. Hebei Journal of Industrial Science and Technology, 2015, 32(5):390-395.
[30] SUI X, YUAN J, ZHOU M, et al. Synthesis of cellulose-graft-poly (N,N-dimethylamino-2-ethylmethacrylate) copolymers via homogeneous ATRP and their aggregates in aqueous media[J]. Biomacromolecules, 2008, 9(10):2615-2620.
[31] MA L, LIU R P, TAN J J. Self-assembly and dual-stimuli sensitivities of hydroxypropyl cellulose-graft-poly(N,N-dimethyl aminoethyl methacrylate) copolymers in aqueous solution[J]. Langmuir, 2010, 10(8):2033-2042.
[32] YU J, LIU S F, LIU Y P. Synthesis and characterization of amphiphilic cellulose-g-PMAEDA graft copolymers[J]. Acta Polymerica Science, 2016, 5:591-598.
[33] LI P, KANG H, CHEN N. Synthesis, self-assembly and redoxresponsive properties of well defined hydroxypropy cell-g-PAEFC copolymers[J]. Polymer International, 2015, 64(8):1015-1022.
[34] LIUW, LIU Y, ZENG G, et al. Coil-to-rod conformational transition and single chain structure of graft copolymer by tuning the graft density[J]. Polymer, 2012, 53(4):1005-1014.
[35] YUAN W, ZOU H, SHEN J. Amphiphilic graft copolymers with ethyl cellulose backbone:synthesis, self-assembly and tunable temperature-CO2 response[J]. Carbohydrate Polymers, 2016, 136:216-223.
[36] IFUKU S, KADLA J F. Preparation of a thermosensitive highly regioselective cellulose/N-isopropylacrylamide copolymer through atom transfer radical polymerization[J]. Biomacromolecules, 2008, 9(11):3308-3313.
[37] XU F J, ZHU Y, LIU F S. Comb-shaped conjugates comprising hydroxypropyl cellulose backbones and low-molecular-weight poly(N-isopropylacryamide) side chains for smart hydrogels:synthesis, characterization, and biomedical applications[J]. Bioconjugate Chemistry, 2010, 21(3):456-464.
[38] WAN S, JIANG M, ZHANG G. Dual temperature-and pH-dependent self-assembly of cellulose-based copolymer with a pair of complementary grafts[J]. Macromolecules, 2007, 40(15):5552-5558.
[39] LIU W Y, LIU R G, LI Y L. Self-assembly of ethyl cellulosegraft-polystyrene copolymers in acetone[J]. Polymer, 2009, 50(1):211-217.
[40] KANG H L, LIU W Y, LIU R G. A novel, amphiphilic ethyl cellulose grafting copolymer with poly(2-hydroxyethyl methacrylate) side chains and its micellization[J]. Macromolecular Chemistry and Physics, 2008, 209(4):424-430.
[41] WANG Z, ZHANG Y, JIANG F, et al. Synthesis and characterization of designed cellulose-graft-polyisoprene copolymers[J]. Polymer Chemistry, 2014, 5(10):3379-3388.
[42] KEVIN H M, LI J, WIJESEKERA K, et al. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants[J]. Biomacromolecules, 2013, 14(9):3130-3139.
[43] MA L, KANG H L, LIU R G, et al. Smart assembly behaviors of hydroxypropyl cellulose-graft-poly(4-vinyl pyridine) copolymers in aqueous solution by thermo and pH stimuli[J]. Langmuir, 2010, 26(23):18519-18525.
[44] LINDQVIST J, NYSTR M D, STMARK E, et al. Intelligent dual-responsive cellulose surfaces via surface-initiated ATRP[J]. Biomacromolecules, 2008, 9(8):2139-2145.
[45] GUO Y Z, ZHANG L, WANG X. Synthesis, characterization and self-assembly behavior of cellulose-g-PCL amphiphilic copolymers[J]. Polymeric Materials Science and Engineering, 2015, 31(8):16-21.
[46] GE W J, GUO Y Z, ZHONG H Q. Synthesis, characterization and micellar behaviors of hydroxyethyl cellulose-graft-poly(lactide/ε-caprolactone/p-dioxanone)[J]. Cellulose, 2015, 22(4):2365-2374.
[47] YUAN H, CHI H, YUAN W Z. Ethyl cellulose amphiphilic graft copolymers with LCST-UCST transition:opposite self-assembly behavior, hydrophilic-hydrophobicsurface and tunable crystalline morphologies[J]. Carbohydrate Polymers, 2016, 147:261-271.
[48] DONG H, XU Q, LI Y, et al. The synthesis of biodegradable graft copolymer cellulose-graft-poly(L-lactide) and the study of its controlled drug release[J]. Colloids and Surfaces B:Biointerfaces, 2008, 66(1):26-33.
[49] LOKITZ B S, CONVERTINE A J, EZELL R G, et al. Responsive nanoassemblies via interpolyelectrolyte complexation ofamphiphilic block copolymer micelles[J]. Macromolecules, 2006, 39(25):8594-8602.
[50] LIU Y D, JIN X S, ZHANG X S, et al. Self-assembly and chiroptical property of poly(N-acryloyl-L-amino acid) grafted celluloses synthesized by RAFT polymerization[J]. Carbohydrate Polymers, 2015, 117:312-318. |