[1] Dujardin E,Ebbesen T W,Krishnan A,et al. Purification of single-shell nanotubes[J]. Adv. Mater.,1998,10(8):611-613.[2] Rinzler A G,Liu J,Dai H,et al. Large-scale purification of single-wall carbon nanotubes:Process,product and characterization [J]. Appl. Phys. A,1998,67(1):29-37.[3] Datsyuk V,Kalyva M,Papagelis K. Chemical oxidation of multi-walled carbon nanotubes[J]. Carbon,2008,46:833-840.[4] Sunwoo L,Tetsuji O,Paik K S,et al. Chemical modification of carbon nanotubes for improvement of field emission property[J]. Microelectronic Engineering,2009,86:2110-2113.[5] Felten A,Bitencourt C,Pireaux J J. Radio-frequency plasma functionalization of carbon nanotubes surface O2,NH3,and CF4 treatments[J]. Applied Physics,2005,98:074308.[6] Okpalugo T,Papakonstantinou P,Murphy H,et al. Oxidative functionalization of carbon nanotubes in atmospheric pressure filamentary dielectric barrier discharge (APDBD)[J]. Carbon,2005,43:2951-2959.[7] Zhang X W,Lei L C,Xia B,et al. Oxidization of carbon nanotubes through hydroxyl radical induced by pulsed O2 plasma and its application for O2 reduction in eletro fenton[J]. Electrochimica Acta,2009,54:2810-2817.[8] Xu T,Yang J H,Liu J W,et al. Surface modification of multi-walled carbon nanotubes by O2 plasma[J]. Applied Surface Science,2007,253:8945-8951.[9] Zhu Y W,Cheong F C,Yu T,et al. Effects of CF4 plasma on the field emission properties of aligned multi-wall carbon nanotubes films [J]. Carbon,2005,43:395-400.[10] Luca V,Jelena M,Ilaria A,et a1. Modification of fluorinated single-walled carbon nanotubes with aminosilane molecules[J]. Carbon,2006,44:2196-2201.[11] Lin Y C,Lin C Y,Chiu P W. Controllable graphene N-doping with ammonia plasma[J]. Applied Physics Letters,2010,96:133100(1)- 133100(3).[12] Ruelle B,Peeterbroeck S,Gouttebaron R,et al. Functionalization of carbon nanotubes by atomic nitrogen formed in a microwaveplasma Ar + N2 and subsequent poly(ε-caprolactone) grafting[J]. Journal of Materials Chemistry,2007,17:157-159.[13] Huang M C,Teng H S. Nitrogen-containing carbons from phenol-formaldehyde resins and their catalytic activity in NO reduction with NH3[J]. Carbon,2003,41:951-957.[14] Grzegorz S Szymánski,Teresa G,Helmut P. Influence of nitrogen surface functionalities on the catalytic activity of activated carbon in low temperature SCR of NOx with NH3[J]. Catalysis Today,2004,90:51-59.[15] Muñiz J,Marbán G,Fuertes A B. Low temperature selective catalytic reduction of NO over modified activated carbon fibres[J]. Applied Catalysis B:Environmental,2000,27:27-36.[16] Grzybek T,Klinik J,Samojeden B,et al. Nitrogen-promoted active carbons as DeNOx catalysts 1. The influence of modification parameters on the structure and catalytic properties[J]. Catalysis Today,2008,137:228-234.[17] Grzybek T,Klinik J,Samojeden B,et al. Nitrogen-promoted active carbons as DeNOx catalysts 2. The influence of Mn promotion on the structure and catalytic properties in SCR [J]. Catalysis Today,2008,137:235-241.[18] Wang W H,Huang B C,Wang L S. Oxidative treatment of multi-wall carbon nanotubes with oxygen dielectric barrier discharge plasma[J]. Surface & Coatings Technology,2011,205:4896-4901.[19] 周红军. 催化裂化原料油加氢脱金属催化剂研究[D]. 青岛:中国石油大学化学工程与技术学院,2011.[20] Shang Z J,Huang S M,Xu X J,et al. Mo/MgO from avalanche-like reduction of MgMoO4 for high efficient growth of multi-walled carbon nanotubes by chemical vapor deposition[J]. Mater. Chem. Phys.,2009,114:173-178.[21] Masoud V N,Abbas A K,Yadollah M,et al. Fast and clean functionalization of carbon nanotubes by dielectric barrier discharge plasma in air compared to acid treatment[J]. Carbon,2010,48:1369-1379.[22] Yang S X,Li X,Zhu W P,et al. Catalytic activity,stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol[J]. Carbon,2008,46:445-452.[23] Qu L T,Liu Y. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. Acsnano,2010,4:1321-1326.[24] Yang,Z,Xia Y,Mokaya R. Aligned N-doped carbon nanotube bundles prepared via CVD using zeolite substrates[J]. Chem. Mater.,2005,17:4502-4508.[25] Kim S Y,Lee J,Na C W,et al. N-doped double-walled carbon nanotubes synthesized by chemical vapor deposition[J]. Chem. Phys. Lett.,2005,413:300-305.[26] Maldonado S,Stevenson K J. Direct preparation of carbon nanofiber electrodes via pyrolysis of iron(II)Phthalo cyanine:Electro catalytic aspects for oxygen reduction[J]. Phys. Chem. B,2004,108:11375-11383.[27] Ayala P,Gruneis A,Gemming T,et al. Tailoring N-doped single and double wall carbon nanotubes from a nondiluted carbon nitrogen feedstock.[J]. Phys. Chem. C,2007,111:2879-2884.[28] Khaled P,Yang S B,Yenuy H,et al. Nitrogen-doped graphene and its iron-based composite as efficient electro catalysts for oxygen reduction reaction[J]. ACS Nano,2012,6:9541-9550.[29] Chen Z,Higgins D,Tao H,et al. Highly active nitrogen-doped carbon nanotubes for oxygen reduction reaction in fuel cell application[J]. Phys. Chem. C,2009,113:21008-21013.[30] 王丽珊. MxOy/MWCNTs催化剂的低温SCR性能与反应机理的研究[D]. 广州:华南理工大学能源与环境学院,2012.[31] Macleod N,Cropley R,Lambert R M. Efficient reduction of NOx by H2 under oxygen-rich conditions over Pd/TiO2 catalysts:An in situ DRIFTS study[J]. Catal. Lett.,2003,86:69-74.[32] Richter M,Trunschke A,Bentrup U,et al. Selective catalytic reduction of nitric oxide by ammonia over egg-shell MnOx/NaY composite catalysts[J]. J. Catal.,2002,206(1):98-113.[33] Marbán G,Valdés S T,Fuertes A B. Mechanism of low temperature selective catalytic reduction of NO with NH3 over carbon-supported Mn3O4[J]. Chem. Phys.,2004,6(2):453-464.[34] Kijlstra W S,Brands D S,Smit H I,et al. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3. 2.Reactivity of adsorbed NH3 and NO complexes[J]. Journal of Catalysis,1997,171(1):219-230. |