化工进展 ›› 2025, Vol. 44 ›› Issue (12): 7281-7289.DOI: 10.16085/j.issn.1000-6613.2024-2011
• 资源与环境化工 • 上一篇
聂彦琪1(
), 李祎璋1, 何旭阳1, 张丁元1, 李卫华1(
), 高伟杰2, 赵长霞2, 孙英杰1, 孙浩然1, 王玉凤1, 朱金林1, 卞荣星1, 路成刚1
收稿日期:2024-12-10
修回日期:2025-01-13
出版日期:2025-12-25
发布日期:2026-01-06
通讯作者:
李卫华
作者简介:聂彦琪(1999—),女,硕士研究生,研究方向为焚烧飞灰污染控制与资源化。E-mail:1640649050@qq.com。
基金资助:
NIE Yanqi1(
), LI Yizhang1, HE Xuyang1, ZHANG Dingyuan1, LI Weihua1(
), GAO Weijie2, ZHAO Changxia2, SUN Yingjie1, SUN Haoran1, WANG Yufeng1, ZHU Jinlin1, BIAN Rongxing1, LU Chenggang1
Received:2024-12-10
Revised:2025-01-13
Online:2025-12-25
Published:2026-01-06
Contact:
LI Weihua
摘要:
以生活垃圾(MSW)焚烧飞灰耦合建筑垃圾微粉-市政污泥烧结制备陶粒为目的,进行了原料配比及烧结参数的优化实验研究,并评价了烧结陶粒性能、烧结过程矿物相变化及氯、重金属迁移特征。结果表明:飞灰、微粉和污泥掺入量分别为30%、65%和10%,预热温度、预热时间、烧结温度和烧结时间分别为500℃、20min、1150℃和25min条件下,可烧制出以透辉石[Ca(Mg,Al)(Si,Al)2O6]和石英(SiO2)为矿物骨架、符合GB/T 17431.1—2010规范的高强轻质陶粒,其筒压强度、堆积密度和1h吸水率分别为13.01MPa、1087kg/m³和0.43%。污泥掺量和烧结温度、预热温度对陶粒的筒压强度、表观密度和1h吸水率等关键性能影响较大。飞灰原灰的直接掺入烧结会导致Cl和Cd、Cu、Zn、Pb较高的烧失率,不利于烧结过程烟气的稳定控制,宜进行必要的脱氯预处理。研究结果可为脱氯提质飞灰耦合多源固废烧结制备高强轻质陶粒资源化利用研究以及烧结参数优化、烧结过程重金属污染控制等提供科学依据和理论参考。
中图分类号:
聂彦琪, 李祎璋, 何旭阳, 张丁元, 李卫华, 高伟杰, 赵长霞, 孙英杰, 孙浩然, 王玉凤, 朱金林, 卞荣星, 路成刚. 垃圾焚烧飞灰耦合建筑垃圾微粉-市政污泥烧结制备陶粒[J]. 化工进展, 2025, 44(12): 7281-7289.
NIE Yanqi, LI Yizhang, HE Xuyang, ZHANG Dingyuan, LI Weihua, GAO Weijie, ZHAO Changxia, SUN Yingjie, SUN Haoran, WANG Yufeng, ZHU Jinlin, BIAN Rongxing, LU Chenggang. Preparation of ceramsite by coupling sintering MSW incineration fly ash with construction waste micro-powder and municipal sludge[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7281-7289.
| 类型 | 指标 | 仪器/方法 |
|---|---|---|
| 陶粒性能 | 颗粒强度 | 微机控制电子万能试验机(WDW-50) |
| 表观密度、堆积密度、1h吸水率、筒压强度、空隙率 | 《轻集料及其试验方法 第2部分:轻集料试验方法》(GB/T 17431.2—2010) | |
| 材料特性 | 元素组成 | X射线荧光光谱仪(XRF,Zetium) |
| 矿物组成 | X射线衍射仪(XRD,Smartlab9) | |
| 重金属含量 | 石墨炉消解+电感耦合等离子体发射光谱仪(ICP-OES,iCAP7000) | |
| 热稳定性 | 热重分析仪(TG-DTG,STA 449 F3) |
表1 检测指标与检测仪器/方法
| 类型 | 指标 | 仪器/方法 |
|---|---|---|
| 陶粒性能 | 颗粒强度 | 微机控制电子万能试验机(WDW-50) |
| 表观密度、堆积密度、1h吸水率、筒压强度、空隙率 | 《轻集料及其试验方法 第2部分:轻集料试验方法》(GB/T 17431.2—2010) | |
| 材料特性 | 元素组成 | X射线荧光光谱仪(XRF,Zetium) |
| 矿物组成 | X射线衍射仪(XRD,Smartlab9) | |
| 重金属含量 | 石墨炉消解+电感耦合等离子体发射光谱仪(ICP-OES,iCAP7000) | |
| 热稳定性 | 热重分析仪(TG-DTG,STA 449 F3) |
| 实验组别 | CW掺量变化 | MS掺量变化 | FA掺量变化 |
|---|---|---|---|
| FA∶CW∶MS | FA∶CW∶MS | FA∶CW∶MS | |
| G1 | 15∶65∶20 | 10∶60∶30 | 25∶60∶15 |
| G2 | 20∶60∶20 | 15∶60∶25 | 30∶60∶15 |
| G3 | 25∶55∶20 | 20∶60∶20 | 35∶60∶15 |
| G4 | 30∶50∶20 | 25∶60∶15 | 40∶60∶15 |
| G5 | 35∶45∶20 | 30∶60∶10 | 45∶60∶15 |
表2 单一原料掺量变化实验设计一览表
| 实验组别 | CW掺量变化 | MS掺量变化 | FA掺量变化 |
|---|---|---|---|
| FA∶CW∶MS | FA∶CW∶MS | FA∶CW∶MS | |
| G1 | 15∶65∶20 | 10∶60∶30 | 25∶60∶15 |
| G2 | 20∶60∶20 | 15∶60∶25 | 30∶60∶15 |
| G3 | 25∶55∶20 | 20∶60∶20 | 35∶60∶15 |
| G4 | 30∶50∶20 | 25∶60∶15 | 40∶60∶15 |
| G5 | 35∶45∶20 | 30∶60∶10 | 45∶60∶15 |
| 序号 | 因素 | 陶粒性能 | ||||
|---|---|---|---|---|---|---|
| FA | CW | MS | 筒压强度/MPa | 表观密度/g·cm-3 | 1h吸水率/% | |
| 1 | 20 | 55 | 10 | 10.80 | 2.06 | 1.00 |
| 2 | 20 | 60 | 15 | 12.00 | 2.22 | 2.33 |
| 3 | 20 | 65 | 20 | 11.20 | 2.22 | 1.52 |
| 4 | 25 | 55 | 15 | 10.10 | 2.30 | 1.93 |
| 5 | 25 | 60 | 20 | 11.50 | 2.28 | 1.04 |
| 6 | 25 | 65 | 10 | 12.20 | 2.22 | 1.15 |
| 7 | 30 | 55 | 20 | 12.30 | 2.30 | 1.38 |
| 8 | 30 | 60 | 15 | 8.10 | 2.34 | 1.55 |
| 9 | 30 | 65 | 10 | 13.10 | 2.17 | 0.35 |
表3 多原料配比正交实验设计及陶粒性能表征
| 序号 | 因素 | 陶粒性能 | ||||
|---|---|---|---|---|---|---|
| FA | CW | MS | 筒压强度/MPa | 表观密度/g·cm-3 | 1h吸水率/% | |
| 1 | 20 | 55 | 10 | 10.80 | 2.06 | 1.00 |
| 2 | 20 | 60 | 15 | 12.00 | 2.22 | 2.33 |
| 3 | 20 | 65 | 20 | 11.20 | 2.22 | 1.52 |
| 4 | 25 | 55 | 15 | 10.10 | 2.30 | 1.93 |
| 5 | 25 | 60 | 20 | 11.50 | 2.28 | 1.04 |
| 6 | 25 | 65 | 10 | 12.20 | 2.22 | 1.15 |
| 7 | 30 | 55 | 20 | 12.30 | 2.30 | 1.38 |
| 8 | 30 | 60 | 15 | 8.10 | 2.34 | 1.55 |
| 9 | 30 | 65 | 10 | 13.10 | 2.17 | 0.35 |
| 项目 | 筒压强度/MPa | 表观密度/g·cm-³ | 1h吸水率/% | ||||||
|---|---|---|---|---|---|---|---|---|---|
| FA | CW | MS | FA | CW | MS | FA | CW | MS | |
| K1 | 34.00 | 33.20 | 36.10 | 6.50 | 6.66 | 6.45 | 4.85 | 4.31 | 2.5 |
| K2 | 33.80 | 31.60 | 30.20 | 6.80 | 6.84 | 6.86 | 4.12 | 4.92 | 5.81 |
| K3 | 33.50 | 36.50 | 35.00 | 6.81 | 6.61 | 6.80 | 3.28 | 3.02 | 3.94 |
| k1 | 11.33 | 11.07 | 12.03 | 2.17 | 2.22 | 2.15 | 1.62 | 1.44 | 0.83 |
| k2 | 11.27 | 10.53 | 10.07 | 2.27 | 2.28 | 2.29 | 1.37 | 1.64 | 1.94 |
| k3 | 11.17 | 12.17 | 11.67 | 2.27 | 2.20 | 2.27 | 1.09 | 1.01 | 1.31 |
| R | 0.16 | 1.64 | 1.96 | 0.102 | 0.075 | 0.137 | 0.53 | 0.63 | 1.11 |
| 优选方案 | FA1 | CW3 | MS1 | FA1 | CW3 | MS1 | FA3 | CW3 | MS1 |
表4 多原料配比烧结陶粒性能指标极差分析
| 项目 | 筒压强度/MPa | 表观密度/g·cm-³ | 1h吸水率/% | ||||||
|---|---|---|---|---|---|---|---|---|---|
| FA | CW | MS | FA | CW | MS | FA | CW | MS | |
| K1 | 34.00 | 33.20 | 36.10 | 6.50 | 6.66 | 6.45 | 4.85 | 4.31 | 2.5 |
| K2 | 33.80 | 31.60 | 30.20 | 6.80 | 6.84 | 6.86 | 4.12 | 4.92 | 5.81 |
| K3 | 33.50 | 36.50 | 35.00 | 6.81 | 6.61 | 6.80 | 3.28 | 3.02 | 3.94 |
| k1 | 11.33 | 11.07 | 12.03 | 2.17 | 2.22 | 2.15 | 1.62 | 1.44 | 0.83 |
| k2 | 11.27 | 10.53 | 10.07 | 2.27 | 2.28 | 2.29 | 1.37 | 1.64 | 1.94 |
| k3 | 11.17 | 12.17 | 11.67 | 2.27 | 2.20 | 2.27 | 1.09 | 1.01 | 1.31 |
| R | 0.16 | 1.64 | 1.96 | 0.102 | 0.075 | 0.137 | 0.53 | 0.63 | 1.11 |
| 优选方案 | FA1 | CW3 | MS1 | FA1 | CW3 | MS1 | FA3 | CW3 | MS1 |
| 序号 | 因素 | 陶粒性能 | |||||
|---|---|---|---|---|---|---|---|
| A/℃ | B/min | C/℃ | D/min | 筒压强度/MPa | 表观密度/g·cm-³ | 1h吸水率/% | |
| 1 | 450 | 15 | 1140 | 15 | 5.55 | 2.022 | 0.97 |
| 2 | 500 | 20 | 1140 | 25 | 7.46 | 2.107 | 0.22 |
| 3 | 400 | 25 | 1140 | 20 | 6.45 | 2.111 | 0.57 |
| 4 | 500 | 25 | 1145 | 15 | 6.86 | 2.209 | 0.43 |
| 5 | 450 | 20 | 1145 | 20 | 6.94 | 2.217 | 0.49 |
| 6 | 400 | 15 | 1145 | 25 | 7.27 | 2.136 | 0.06 |
| 7 | 450 | 25 | 1150 | 25 | 8.41 | 2.104 | 0.73 |
| 8 | 400 | 20 | 1150 | 15 | 7.89 | 1.890 | 0.47 |
| 9 | 500 | 15 | 1150 | 20 | 7.66 | 2.020 | 0.24 |
表5 烧结参数正交实验设计及陶粒性能表征
| 序号 | 因素 | 陶粒性能 | |||||
|---|---|---|---|---|---|---|---|
| A/℃ | B/min | C/℃ | D/min | 筒压强度/MPa | 表观密度/g·cm-³ | 1h吸水率/% | |
| 1 | 450 | 15 | 1140 | 15 | 5.55 | 2.022 | 0.97 |
| 2 | 500 | 20 | 1140 | 25 | 7.46 | 2.107 | 0.22 |
| 3 | 400 | 25 | 1140 | 20 | 6.45 | 2.111 | 0.57 |
| 4 | 500 | 25 | 1145 | 15 | 6.86 | 2.209 | 0.43 |
| 5 | 450 | 20 | 1145 | 20 | 6.94 | 2.217 | 0.49 |
| 6 | 400 | 15 | 1145 | 25 | 7.27 | 2.136 | 0.06 |
| 7 | 450 | 25 | 1150 | 25 | 8.41 | 2.104 | 0.73 |
| 8 | 400 | 20 | 1150 | 15 | 7.89 | 1.890 | 0.47 |
| 9 | 500 | 15 | 1150 | 20 | 7.66 | 2.020 | 0.24 |
| 项目 | 筒压强度/MPa | 表观密度/g·cm-³ | 1h吸水率/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A | B | C | D | A | B | C | D | A | B | C | D | |
| K1 | 21.61 | 20.48 | 19.46 | 20.30 | 6.14 | 6.18 | 6.24 | 6.12 | 1.10 | 1.27 | 1.76 | 1.87 |
| K2 | 20.90 | 22.29 | 21.07 | 21.05 | 6.34 | 6.21 | 6.56 | 6.35 | 2.19 | 1.18 | 0.98 | 1.30 |
| K3 | 21.98 | 21.72 | 23.96 | 23.14 | 6.34 | 6.42 | 6.01 | 6.35 | 0.89 | 1.73 | 1.44 | 1.01 |
| k1 | 7.20 | 6.83 | 6.49 | 6.77 | 2.05 | 2.06 | 2.08 | 2.04 | 0.37 | 0.42 | 0.59 | 0.62 |
| k2 | 6.97 | 7.43 | 7.02 | 7.02 | 2.11 | 2.07 | 2.19 | 2.12 | 0.73 | 0.39 | 0.33 | 0.43 |
| k3 | 7.33 | 7.24 | 7.99 | 7.71 | 2.11 | 2.14 | 2.00 | 2.12 | 0.30 | 0.58 | 0.48 | 0.34 |
| R | 0.36 | 0.60 | 1.50 | 0.94 | 0.06 | 0.08 | 0.19 | 0.08 | 0.43 | 0.19 | 0.26 | 0.28 |
| 优选方案 | A3 | B2 | C3 | D3 | A1 | B1 | C3 | D1 | A3 | B2 | C2 | D3 |
表6 烧结参数正交试验中陶粒性能指标极差分析
| 项目 | 筒压强度/MPa | 表观密度/g·cm-³ | 1h吸水率/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A | B | C | D | A | B | C | D | A | B | C | D | |
| K1 | 21.61 | 20.48 | 19.46 | 20.30 | 6.14 | 6.18 | 6.24 | 6.12 | 1.10 | 1.27 | 1.76 | 1.87 |
| K2 | 20.90 | 22.29 | 21.07 | 21.05 | 6.34 | 6.21 | 6.56 | 6.35 | 2.19 | 1.18 | 0.98 | 1.30 |
| K3 | 21.98 | 21.72 | 23.96 | 23.14 | 6.34 | 6.42 | 6.01 | 6.35 | 0.89 | 1.73 | 1.44 | 1.01 |
| k1 | 7.20 | 6.83 | 6.49 | 6.77 | 2.05 | 2.06 | 2.08 | 2.04 | 0.37 | 0.42 | 0.59 | 0.62 |
| k2 | 6.97 | 7.43 | 7.02 | 7.02 | 2.11 | 2.07 | 2.19 | 2.12 | 0.73 | 0.39 | 0.33 | 0.43 |
| k3 | 7.33 | 7.24 | 7.99 | 7.71 | 2.11 | 2.14 | 2.00 | 2.12 | 0.30 | 0.58 | 0.48 | 0.34 |
| R | 0.36 | 0.60 | 1.50 | 0.94 | 0.06 | 0.08 | 0.19 | 0.08 | 0.43 | 0.19 | 0.26 | 0.28 |
| 优选方案 | A3 | B2 | C3 | D3 | A1 | B1 | C3 | D1 | A3 | B2 | C2 | D3 |
| 项目 | 烧结陶粒 | 高强轻质粗集料 |
|---|---|---|
| 颗粒强度/kN | 7.89 | — |
| 筒压强度/MPa | 13.01 | ≥6.5 |
| 表观密度/kg·m-3 | 2094 | — |
| 堆积密度/kg·m-³ | 1087 | >1000 |
| 1h吸水率/% | 0.43 | ≤10 |
表7 烧结陶粒性能表征
| 项目 | 烧结陶粒 | 高强轻质粗集料 |
|---|---|---|
| 颗粒强度/kN | 7.89 | — |
| 筒压强度/MPa | 13.01 | ≥6.5 |
| 表观密度/kg·m-3 | 2094 | — |
| 堆积密度/kg·m-³ | 1087 | >1000 |
| 1h吸水率/% | 0.43 | ≤10 |
| 元素 | 含量 | 烧结损失率/% | 沸点/℃ | ||
|---|---|---|---|---|---|
| 生料球 | 陶粒 | 氯化态 | 氧化态 | ||
| Cl | 8.88% | 3.61% | 50.01 | — | — |
| Cd | 53.47mg/kg | 6.26mg/kg | 85.59 | 960 | 1385 |
| Cr | 87.27mg/kg | 68.40mg/kg | 3.48 | 1302 | 4000 |
| Cu | 155.42mg/kg | 36.74mg/kg | 70.89 | 993 | 1516 |
| Ni | 64.30mg/kg | 49.73mg/kg | 4.76 | 987 | — |
| Pb | 343.20mg/kg | 18.98mg/kg | 93.19 | 950 | 1535 |
| Zn | 1469.52mg/kg | 353.97mg/kg | 70.34 | 732 | 2360 |
表8 烧结前后各元素含量、烧结损失及重金属沸点
| 元素 | 含量 | 烧结损失率/% | 沸点/℃ | ||
|---|---|---|---|---|---|
| 生料球 | 陶粒 | 氯化态 | 氧化态 | ||
| Cl | 8.88% | 3.61% | 50.01 | — | — |
| Cd | 53.47mg/kg | 6.26mg/kg | 85.59 | 960 | 1385 |
| Cr | 87.27mg/kg | 68.40mg/kg | 3.48 | 1302 | 4000 |
| Cu | 155.42mg/kg | 36.74mg/kg | 70.89 | 993 | 1516 |
| Ni | 64.30mg/kg | 49.73mg/kg | 4.76 | 987 | — |
| Pb | 343.20mg/kg | 18.98mg/kg | 93.19 | 950 | 1535 |
| Zn | 1469.52mg/kg | 353.97mg/kg | 70.34 | 732 | 2360 |
| [1] | 中华人民共和国国家统计局. 中国统计年鉴2023 [M]. 北京: 中国统计出版社, 2023. |
| National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook 2023[M]. Beijing: China Statistics Press, 2023. | |
| [2] | LI Xue, SUN Yingjie, LI Weihua, et al. Solidification/stabilization pre-treatment coupled with landfill disposal of heavy metals in MSWI fly ash in China: A systematic review[J]. Journal of Hazardous Materials, 2024, 478: 135479. |
| [3] | 孔祥蕊, 董玥岑, 张蒙雨, 等. 生活垃圾焚烧飞灰处理技术研究进展[J]. 化工进展, 2024, 43(7): 4102-4117. |
| KONG Xiangrui, DONG Yuecen, ZHANG Mengyu, et al. Treatment technologies of fly ash from municipal solid waste incineration[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4102-4117. | |
| [4] | 尹俊权, 吴寅凯, 李卫华, 等. 垃圾焚烧典型工段灰/渣理化特性及环境风险性[J]. 化工进展, 2024, 43(8): 4714-4725. |
| YIN Junquan, WU Yinkai, LI Weihua, et al. Physicochemical characteristics and environmental risk of ash/slag in typical sections of MSW incineration[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4714-4725. | |
| [5] | LONG Yuyang, PU Kai, YANG Yuqiang, et al. Preparation of high-strength ceramsite from municipal solid waste incineration fly ash and clay based on CaO-SiO2-Al2O3 system[J]. Construction and Building Materials, 2023, 368: 130492. |
| [6] | 吴海仁, 郭辉东, 翟凌阁. 建筑垃圾资源化处理及掺烧技术研究[J]. 中国资源综合利用, 2024, 42(10): 126-129. |
| WU Hairen, GUO Huidong, ZHAI Lingge. Research on resource utilization and co-incineration technology of construction waste[J]. China Resources Comprehensive Utilization, 2024, 42(10): 126-129. | |
| [7] | 王玉, 余广炜, 林佳佳, 等. 沼渣、飞灰和污泥生物炭制备建筑陶粒[J]. 化工进展, 2023, 42(2): 1039-1050. |
| WANG Yu, YU Guangwei, LIN Jiajia, et al. Preparation of building ceramsite from food waste digestate residues, incineration fly ash and sludge biochar[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1039-1050. | |
| [8] | 方伟成, 程星星, 孙常荣. 响应曲面法优化污泥/粉煤灰复合陶粒滤料的制备[J]. 无机盐工业, 2022, 54(9): 119-125, 142. |
| FANG Weicheng, CHENG Xingxing, SUN Changrong. Optimization of preparation of sludge/fly ash composite ceramsite filler materials by response surface methodology[J]. Inorganic Chemicals Industry, 2022, 54(9): 119-125, 142. | |
| [9] | 裴军军, 苑博文, 高敏, 等. 再生微粉多元复合胶凝体系的性能研究[J]. 硅酸盐通报, 2024, 43(5): 1812-1821. |
| PEI Junjun, YUAN Bowen, GAO Min, et al. Properties of multi-component composite cementitious system of regenerated micropowder[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(5): 1812-1821. | |
| [10] | 高瑞晓, 荣辉, 王海良, 等. 800密度等级的渣土陶粒制备及性能研究[J]. 硅酸盐通报, 2017, 36(5): 1646-1650. |
| GAO Ruixiao, RONG Hui, WANG Hailiang, et al. Preparation and performance of 800 density grades muck-ceramsite[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(5): 1646-1650. | |
| [11] | 季维生. 700密度等级渣土陶粒制备及其性能研究[J]. 硅酸盐通报, 2017, 36(7): 2209-2214. |
| JI Weisheng. Preparation and performance of 700 density grades muck-ceramsite[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(7): 2209-2214. | |
| [12] | FURLANI Erika, Sergio BRÜCKNER, MINICHELLI Dino, et al. Synthesis and characterization of ceramics from coal fly ash and incinerated paper mill sludge[J]. Ceramics International, 2008, 34(8): 2137-2142. |
| [13] | RILEY CHARLES M. Relation of chemical properties to the bloating of clays[J]. Journal of the American Ceramic Society, 1951, 34(4): 121-128. |
| [14] | MI Hongcheng, YI Longsheng, WU Qian, et al. Preparation of high-strength ceramsite from red mud, fly ash, and bentonite[J]. Ceramics International, 2021, 47(13): 18218-18229. |
| [15] | MORENO-MAROTO José Manuel, Manuel UCEDA-RODRÍGUEZ, COBO-CEACERO Carlos Javier, et al. Studying the feasibility of a selection of Southern European ceramic clays for the production of lightweight aggregates[J]. Construction and Building Materials, 2020, 237: 117583. |
| [16] | WANG Xuxu, QIN Yuhong, OKEKE Ikechukwu, et al. Revealing the intrinsic sintering mechanism of high-strength ceramsite from CFB fly ash: Focus on the role of CaO[J]. Ceramics International, 2024, 50(13): 24281-24292. |
| [17] | ZHU Ying, SHAO Yingying, TIAN Chao, et al. Preparation of municipal solid waste incineration fly ash/granite sawing mud ceramsite and the morphological transformation and migration properties of chlorine[J]. Waste Management, 2024, 173: 1-9. |
| [18] | LIU Shunbo, ZHANG Hengyun, XU Xiaobin. A study on the transient heat generation rate of lithium-ion battery based on full matrix orthogonal experimental design with mixed levels[J]. Journal of Energy Storage, 2021, 36: 102446. |
| [19] | XIONG Xin, CHEN Hu, JIANG Pengcheng, et al. Honeycombed pomegranate-like sludge ceramsite particles: Preparation with fly ash floating beads as the pore-forming template and performance optimization[J]. Construction and Building Materials, 2024, 453: 139017. |
| [20] | 杨珊珊. 城市污水处理厂污泥固化及制备陶粒初探[D]. 北京: 北京工业大学, 2015. |
| YANG Shanshan. Sewage sludge curing experiment and preparation of ceramsite[D]. Beijing: Beijing University of Technology, 2015. | |
| [21] | LI Tianpeng, SUN Tingting, LI Dengxin. Preparation, sintering behavior, and expansion performance of ceramsite filter media from dewatered sewage sludge, coal fly ash, and river sediment[J]. Journal of Material Cycles and Waste Management, 2018, 20(1): 71-79. |
| [22] | WANG Dong, HUANG Jinlou, PENG Hongtao, et al. Sinterability and expansion property of ceramsite made with lead-zinc mine tailings[J]. Applied Mechanics and Materials, 2014, 551: 23-27. |
| [23] | LI Pengwei, LUO Shaohua, ZHANG Lin, et al. Study on preparation and performance of iron tailings-based porous ceramsite filter materials for water treatment[J]. Separation and Purification Technology, 2021, 276: 119380. |
| [24] | XIAO Tingting, FAN Xuyang, ZHOU Chenyu, et al. Preparation of ultra-lightweight ceramsite from waste materials: Using phosphate tailings as pore-forming agent[J]. Ceramics International, 2024, 50(9): 15218-15229. |
| [25] | FUERTES V, REINOSA J J, FERNÁNDEZ J F, et al. Engineered feldspar-based ceramics: A review of their potential in ceramic industry[J]. Journal of the European Ceramic Society, 2022, 42(2): 307-326. |
| [26] | CHEESEMAN C R, MAKINDE A, BETHANIS S. Properties of lightweight aggregate produced by rapid sintering of incinerator bottom ash[J]. Resources, Conservation and Recycling, 2005, 43(2): 147-162. |
| [27] | FENG Jinyang, WU Donghua, LONG Min, et al. Diopside glass-ceramics were fabricated by sintering the powder mixtures of waste glass and Kaolin[J]. Ceramics International, 2022, 48(18): 27088-27096. |
| [28] | MÉNARD Y, ASTHANA A, PATISSON F, et al. Thermodynamic study of heavy metals behaviour during municipal waste incineration[J]. Process Safety and Environmental Protection, 2006, 84(4): 290-296. |
| [29] | JIANG Jianguo, XU Xin, WANG Jun, et al. Investigation of basic properties of fly ash from urban waste incinerators in China[J]. Journal of Environmental Sciences, 2007, 19(4): 458-463. |
| [30] | 严建华, 李建新, 池涌, 等. 垃圾焚烧飞灰重金属蒸发特性试验分析[J]. 环境科学, 2004, 25(2): 170-173. |
| YAN Jianhua, LI Jianxin, CHI Yong, et al. Characteristic analysis of heavy metals’ evaporation of MSWI fly ash[J]. Environmental Science, 2004, 25(2): 170-173. | |
| [31] | 杨凤玲, 李鹏飞, 叶泽甫, 等. 城市生活垃圾焚烧飞灰组成特性及重金属熔融固化处理技术研究进展[J]. 洁净煤技术, 2021, 27(1):169-180. |
| YANG Fengling, LI Pengfei, YE Zefu, et al. Study progress on the composition characteristics of fly ash from municipal solid waste incineration and treatment technology of heavy metal melting and solidification[J]. Clean Coal Technology, 2021, 27(1): 169-180. |
| [1] | 张光辉, 江金旭, 黄磊, 陈士祥, 马天添. 市政污泥富氧燃烧特性影响因素分析及预测[J]. 化工进展, 2025, 44(9): 5460-5470. |
| [2] | 高嘉炜, 黄亚继, 王圣, 朱志成, 肖怡萱, 宋惠康, 刘俊, 祁帅杰, 张煜尧, 赵佳琪. 硅铝矿物组分对垃圾焚烧飞灰熔融特性与重金属固化的影响[J]. 化工进展, 2025, 44(3): 1716-1725. |
| [3] | 郑钰, 李靖杰, 张宇峰, 赵梦琦, 张娜, 周澳, 于伟, 谭厚章, 王学斌. 典型炉排炉和流化床垃圾焚烧飞灰及螯合产物的重金属浸出毒性[J]. 化工进展, 2024, 43(3): 1630-1636. |
| [4] | 修浩然, 王云刚, 白彦渊, 邹立, 刘阳. 准东煤/市政污泥混燃燃烧特性及灰熔融行为分析[J]. 化工进展, 2023, 42(6): 3242-3252. |
| [5] | 李卫华, 吴寅凯, 孙英杰, 尹俊权, 辛明学, 赵友杰. 垃圾焚烧飞灰重金属毒性浸出评价方法研究进展[J]. 化工进展, 2023, 42(5): 2666-2677. |
| [6] | 王毅斌, 冯敬武, 谭厚章, 李良钰. 市政污泥热化学处置中磷元素形态转变与回收利用研究进展[J]. 化工进展, 2023, 42(2): 985-999. |
| [7] | 王玉, 余广炜, 林佳佳, 黎长江, 江汝清, 邢贞娇, 余铖. 沼渣、飞灰和污泥生物炭制备建筑陶粒[J]. 化工进展, 2023, 42(2): 1039-1050. |
| [8] | 谷凯, 吴寅凯, 尹俊权, 李卫华, 孙英杰, 张庆建, 葛燕辰, 何依洋, 赵灵燕, 王华伟. 多元浸沥场景下固化/稳定飞灰中重金属浸出行为[J]. 化工进展, 2023, 42(11): 6113-6125. |
| [9] | 方宇飞, 丁冬海, 肖国庆, 付鹏程, 种小川, 朱现峰. 陶粒支撑剂的研究及应用进展[J]. 化工进展, 2022, 41(5): 2511-2525. |
| [10] | 谷志攀, 阳季春, 张叶, 陶乐仁, 刘泛函. 市政污泥吸附等温线模型和热力学性质[J]. 化工进展, 2022, 41(2): 998-1008. |
| [11] | 朱子晗, 陈卫华, 华银锋, 张海涛, 赵由才, 郭燕燕, 戴世金. 垃圾焚烧飞灰重金属药剂稳定化研究进展[J]. 化工进展, 2021, 40(11): 6358-6368. |
| [12] | 刘贤力, 侯昭胤. 重金属污染土壤回转窑协同处置和资源化利用[J]. 化工进展, 2020, 39(S1): 287-291. |
| [13] | 杨英英, 伏舜宇, 武卫东, 张兵. 新型建筑用二元复合定型相变材料的制备及性能评价[J]. 化工进展, 2020, 39(10): 4119-4126. |
| [14] | 王清良, 陈鹏, 胡鄂明, 李乾, 王红强, 阳奕汉, 李德, 徐屹群. 耐冷嗜酸硫杆菌快速氧化地浸采铀吸附尾液中Fe2+[J]. 化工进展, 2018, 37(10): 3995-4005. |
| [15] | 李倩炜, 周笑绿, 李环, 吴南江. 粉煤灰陶粒填料制备及用作曝气生物滤池填料的性能考察[J]. 化工进展, 2015, 34(09): 3379-3382. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |