| [11] |
SHAH Janki, RANJAN Mukesh, THAREJA Prachi, et al. Tailoring stability and thermophysical properties of CuO nanofluid through ultrasonication[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(19): 10319-10328.
|
| [12] |
李艳娇, 孙崇锋, 郭剑锋, 等. AlN/EG纳米流体的制备及稳定性研究[J]. 功能材料, 2015, 46(8): 8018-8022.
|
|
LI Yanjiao, SUN Chongfeng, GUO Jianfeng, et al. Synthesis and investigation on stability of AlN/EG nanofluids[J]. Journal of Functional Materials, 2015, 46(8): 8018-8022.
|
| [13] |
JAIN Akshat, AMBEKAR Anirudha, THAJUDEEN Thaseem. Experimental investigation on the effect of size modification of alumina nano-additives on the performance and emission characteristics of a compression ignition engine[J]. Journal of Thermal Analysis and Calorimetry, 2024, 149(1): 479-494.
|
| [14] |
YADAV Priyanka, GUPTA Shipra Mital, SHARMA S K. Preparation and characterization of surfactant-free CNT based nanofluid in EG/water (60∶40 ratio) basefluid for refrigerant application[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(19): 10037-10050.
|
| [15] |
HUANG Zhixue, YANG Huan, ZHENG Lijun, et al. Preparation of amphiphilic Janus nanosheets based on thermally expandable microspheres and evaluation of their physical and chemical properties[J]. Fuel, 2024, 358: 130253.
|
| [16] |
李丹, 方文军. 油基-银纳米流体的制备及稳定性研究[J]. 高校化学工程学报, 2013, 27(4): 657-662.
|
|
LI Dan, FANG Wenjun. Preparation and stability of oil- based silver nanofluids[J]. Journal of Chemical Engineering of Chinese Universities, 2013, 27(4): 657-662.
|
| [17] |
LI Xinfang, ZHU Dongsheng, WANG Xianju. Evaluation on dispersion behavior of the aqueous copper nano-suspensions[J]. Journal of Colloid and Interface Science,2007, 310(2): 456-463.
|
| [18] |
LEONG Kin Yuen, NAJWA Z A, KU AHMAD K Z, et al. Investigation on stability and optical properties of titanium dioxide and aluminum oxide water-based nanofluids[J]. International Journal of Thermophysics, 2017, 38(5): 77.
|
| [19] |
王亚辉, 罗延旭, 刘耀, 等. 纳米流体研究进展[J]. 能源工程, 2022, 42(2): 7-16.
|
|
WANG Yahui, LUO Yanxu, LIU Yao, et al. Review of research progress of nanofluids[J]. Energy Engineering, 2022, 42(2): 7-16.
|
| [20] |
SOLTANI Farid, TOGHRAIE Davood, KARIMIPOUR Arash. Experimental measurements of thermal conductivity of engine oil-based hybrid and mono nanofluids with tungsten oxide (WO3) and MWCNTs inclusions[J]. Powder Technology, 2020, 371: 37-44.
|
| [21] |
李信, 杨谋存, 朱跃钊. 油基CuO纳米流体的制备及热稳定性实验研究[J]. 硅酸盐通报, 2018, 37(7): 2285-2290.
|
|
LI Xin, YANG Moucun, ZHU Yuezhao. Preparation and thermal stability of oil-based CuO nanofluids[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(7): 2285-2290.
|
| [22] |
Paloma MARTÍNEZ-MERINO, Antonio SÁNCHEZ-CORONILLA, Rodrigo ALCÁNTARA, et al. Insights into the stability and thermal properties of WSe2-based nanofluids for concentrating solar power prepared by liquid phase exfoliation[J]. Journal of Molecular Liquids, 2020, 319: 114333.
|
| [23] |
ASADI Amin, ALARIFI Ibrahim M, Vakkar ALI, et al. An experimental investigation on the effects of ultrasonication time on stability and thermal conductivity of MWCNT-water nanofluid: Finding the optimum ultrasonication time[J]. Ultrasonics Sonochemistry, 2019, 58: 104639.
|
| [24] |
张亚楠, 刘妮, 由龙涛, 等. 表面活性剂对水基纳米流体特性影响的研究进展[J]. 化工进展, 2015, 34(4): 903-910, 920.
|
|
ZHANG Yanan, LIU Ni, YOU Longtao, et al. Research progress in the effect of surfactants on the characteristics of H2O-based nanofluids[J]. Chemical Industry and Engineering Progress, 2015, 34(4): 903-910, 920.
|
| [25] |
陈鹏飞. Al2O3-H2O纳米流体粘度预测模型及表面张力的实验研究[D] . 昆明: 昆明理工大学, 2021.
|
|
CHEN Pengfei. Experimental study on viscosity prediction model and surface tension of Al2O3-H2O nanofluid[D]. Kunming: Kunming University of Science and Technology, 2021.
|
| [26] |
CACUA Karen, Fredy ORDOÑEZ, ZAPATA Camilo, et al. Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583: 123960.
|
| [27] |
李凯, 魏鹤琳, 左夏华, 等. 水基炭黑-胶原蛋白纳米流体制备及稳定性实验[J]. 化工进展, 2024,43(4): 1944-1952.
|
|
LI Kai, WEI Helin, ZUO Xiahua, et al. Experimental study on the preparation and stability of water-based carbon black-collagen nanofluids[J]. Chemical Industry and Engineering Progress, 2024,43(4): 1944-1952.
|
| [28] |
张浩. TiO2 /水纳米流体物性及强化传热特性研究[D]. 昆明: 昆明理工大学, 2022.
|
|
ZHANG Hao. Study on physical properties and enhanced heat transfer characteristics of TiO2/water nanofluids[D]. Kunming: Kunming University of Science and Technology, 2022.
|
| [29] |
AGARWAL Deepak Kumar, VAIDYANATHAN Aravind, SUNIL KUMAR S. Synthesis and characterization of kerosene-alumina nanofluids[J]. Applied Thermal Engineering, 2013, 60(1/2): 275-284.
|
| [1] |
CHOI S U, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles [J]. Asme Fed, 1995, 231(1): 99-105.
|
| [2] |
张俊, 李苏巧, 彭林明, 等. 纳米流体强化气液传质研究进展[J]. 化工进展, 2013, 32(4): 732-739.
|
|
ZHANG Jun, LI Suqiao, PENG Linming, et al. Progress in research on gas-liquid mass transfer enhancement of nanofluids[J]. Chemical Industry and Engineering Progress, 2013, 32(4): 732-739.
|
| [3] |
马明琰, 翟玉玲, 轩梓灏, 等. 三元混合纳米流体稳定性及热性能[J]. 化工进展, 2021, 40(8): 4179-4186.
|
|
MA Mingyan, ZHAI Yuling, XUAN Zihao, et al. Stability and thermal performance of ternary hybrid nanofluids[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4179-4186.
|
| [4] |
SAJID Muhammad Usman, BICER Yusuf. Impacts of ultrasonication time and surfactants on stability and optical properties of CuO, Fe3O4,and CNTs/water nanofluids for spectrum selective applications[J]. Ultrasonics Sonochemistry, 2022, 88: 106079.
|
| [5] |
Krishna BHAT D, Pavan KUMAR S, Sandhya SHENOY U. Design, synthesis, and characterization of stable copper nanofluid with enhanced thermal conductivity[J]. Materials Today Communications, 2024, 39: 109129.
|
| [6] |
Pavan KUMAR S, Sandhya SHENOY U, Krishna BHAT D. A direct approach towards synthesis of copper nanofluid by one step solution phase method[J]. Journal of Crystal Growth, 2024, 630: 127591.
|
| [7] |
ZHANG Hao, QING Shan, XU Jiarui, et al. Stability and thermal conductivity of TiO2 /water nanofluids: A comparison of the effects of surfactants and surface modification[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128492.
|
| [8] |
ZHANG Xusheng, YANG Bin, SHI Yue, et al. Stability, thermophysical, optical and photothermal properties of ZnO nanofluids with added anionic/cationic mixed surfactants[J]. Journal of Solid State Science and Technology, 2024, 13(5) : 053006.
|
| [9] |
BARAI Divya P, BHANVASE Bharat A, Gaweł ŻYŁA. Experimental investigation of thermal conductivity of water-based Fe3O4 nanofluid: An effect of ultrasonication time[J]. Nanomaterials, 2022, 12(12) : 1961.
|
| [10] |
张国龙, 王宁峰, 铁生年, 等. 纳米氧化镁在丙二醇中的分散及稳定性研究[J]. 无机盐工业, 2015, 47(6): 39-42.
|
|
ZHANG Guolong, WANG Ningfeng, Shengnian TIE, et al. Study on dispersion and stability of MgO nanoparticles in propylene glycol[J]. Inorganic Chemicals Industry, 2015, 47(6): 39-42.
|