| [1] |
OMER Abdeen Mustafa. Energy, environment and sustainable development[J]. Renewable and Sustainable Energy Reviews, 2008, 12(9): 2265-2300.
|
| [2] |
LI G, LI M, TAYLOR R, et al. Solar energy utilisation: Current status and roll-out potential[J]. Applied Thermal Engineering, 2022, 209: 118285.
|
| [3] |
李艳, 洪文鹏, 牛晓娟, 等. 水基Ag@TiO2纳米流体液滴光热蒸发特性研究[J]. 工程热物理学报, 2022, 43(6): 1467-1472.
|
|
LI Yan, HONG Wenpeng, NIU Xiaojuan, et al. Investigation on photothermal evaporation characteristics of water-based Ag@TiO2 nanofluid droplets[J]. Journal of Engineering Thermophysics, 2022, 43(6): 1467-1472.
|
| [4] |
HAZRA S K, GHOSH S, NANDI T K. Photo-thermal conversion characteristics of carbon black-ethylene glycol nanofluids for applications in direct absorption solar collectors[J]. Applied Thermal Engineering, 2019, 163: 114402.
|
| [5] |
张俊, 李苏巧, 彭林明, 等. 纳米流体强化气液传质研究进展[J]. 化工进展, 2013, 32(4): 732-739.
|
|
ZHANG Jun, LI Suqiao, PENG Linming, et al. Progress in research on gas-liquid mass transfer enhancement of nanofluids[J]. Chemical Industry and Engineering Progress, 2013, 32(4): 732-739.
|
| [6] |
王婷婷, 吴子华, 黄玥铭, 等. 炭黑骨胶纳米流体的制备及其光热转换性能[J]. 上海第二工业大学学报, 2022, 39(4): 292-300.
|
|
WANG Tingting, WU Zihua, HUANG Yueming, et al. Preparation and photothermal conversion properties of carbon black-bone glue nanofluids[J]. Journal of Shanghai Polytechnic University, 2022, 39(4): 292-300.
|
| [7] |
陈梅洁. Au纳米流体的制备及其光热转换特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
|
|
CHEN Meijie. Preparation of Au nanofluid and its photothermal conversion characteristics[D]. Harbin: Harbin Institute of Technology, 2016.
|
| [8] |
李兴, 汪昭玮, 孙一峰. 分散剂对纳米流体影响的研究进展[J]. 材料导报, 2015, 29(23): 30-35.
|
|
LI Xing, WANG Zhaowei, SUN Yifeng. Research of surfactant on the influence of nanofluid[J]. Materials Reports, 2015, 29(23): 30-35.
|
| [9] |
程波, 杜垲, 张小松, 等. 氨水-纳米炭黑纳米流体的稳定性[J]. 化工学报, 2008, 59(S2): 49-52.
|
|
CHENG Bo, DU Kai, ZHANG Xiaosong, et al. Stability of ammonia-carbon black nanofluids[J]. CIESC Journal, 2008, 59(S2): 49-52.
|
| [10] |
YANG Liu, DU Kai, NIU Xiaofeng, et al. An experimental and theoretical study of the influence of surfactant on the preparation and stability of ammonia-water nanofluids[J]. International Journal of Refrigeration, 2011, 34(8): 1741-1748.
|
| [11] |
李凯, 魏鹤琳, 左夏华, 等. 水基炭黑-胶原蛋白纳米流体制备及稳定性实验[J]. 化工进展, 2024, 43(4): 1944-1952.
|
|
LI Kai, WEI Helin, ZUO Xiahua, et al. Experimental study on the preparation and stability of water-based carbon black-collagen nanofluids[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1944-1952.
|
| [12] |
MARCOS Marco A, Jacek FAL, VALLEJO Javier P, et al. Thermophysical, rheological and dielectric behaviour of stable carbon black dispersions in PEG200[J]. Journal of Molecular Liquids, 2023, 391: 123216.
|
| [13] |
Alexandra GIMENO-FURIO, NAVARRETE Nuria, MONDRAGON Rosa, et al. Stabilization and characterization of a nanofluid based on a eutectic mixture of diphenyl and diphenyl oxide and carbon nanoparticles under high temperature conditions[J]. International Journal of Heat and Mass Transfer, 2017, 113: 908-913.
|
| [14] |
KUMAR Anuj, RAO Kummara Madhusudana, HAN Sung Soo. Application of xanthan gum as polysaccharide in tissue engineering: A review[J]. Carbohydrate Polymers, 2018, 180: 128-144.
|
| [15] |
BENNY Indu Sara, GUNASEKAR V, PONNUSAMI V. Review on application of xanthan gum in drug delivery[J]. International Journal of PharmTech Research, 2014, 6(4): 1322-1326.
|
| [16] |
BEJENARIU Anca, POPA Marcel, DULONG Virginie, et al. Trisodium trimetaphosphate crosslinked xanthan networks: Synthesis, swelling, loading and releasing behaviour[J]. Polymer Bulletin, 2009, 62(4): 525-538.
|
| [17] |
POOJA Deep, PANYARAM Sravani, KULHARI Hitesh, et al. Xanthan gum stabilized gold nanoparticles: Characterization, biocompatibility, stability and cytotoxicity[J]. Carbohydrate Polymers, 2014, 110: 1-9.
|
| [18] |
LIU Guansheng, ZHAN Weiyong, HUO Lili, et al. Kinetic stability of Fe-based nanoparticles with rheological modification by xanthan gum: A critical stabilization concentration and the underlying mechanism[J]. International Journal of Biological Macromolecules, 2024, 266: 131270.
|
| [19] |
COMBA Silvia, SETHI Rajandrea. Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum[J]. Water Research, 2009, 43(15): 3717-3726.
|
| [20] |
XUE Dingqi, SETHI Rajandrea. Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles[J]. Journal of Nanoparticle Research, 2012, 14(11): 1239.
|
| [21] |
XIN Jia, TANG Fenglin, ZHENG Xilai, et al. Transport and retention of xanthan gum-stabilized microscale zero-valent iron particles in saturated porous media[J]. Water Research, 2016, 88: 199-206.
|
| [22] |
REN Liming, DONG Jun, CHI Zifang, et al. Rheology modification of reduced graphene oxide based nanoscale zero valent iron (nZVI/rGO) using xanthan gum (XG): Stability and transport in saturated porous media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562: 34-41.
|
| [23] |
MAHBUBUL I M, ELCIOGLU E B, AMALINA M A, et al. Stability, thermophysical properties and performance assessment of alumina-water nanofluid with emphasis on ultrasonication and storage period[J]. Powder Technology, 2019, 345: 668-675.
|
| [24] |
熊亚选, 宋超宇, 药晨华, 等. 纳米流体稳定性研究综述[J]. 华电技术, 2021, 43(7): 68-74.
|
|
XIONG Yaxuan, SONG Chaoyu, YAO Chenhua, et al. Review on the stability of nanofluids[J]. Huadian Technology, 2021, 43(7): 68-74.
|
| [25] |
Wisut CHAMSA-ARD, BRUNDAVANAM Sridevi, FUNG Chun Che, et al. Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: A review[J]. Nanomaterials, 2017, 7(6): 131.
|
| [26] |
JANSSON Per-Erik, KENNE Lennart, LINDBERG Bengt. Structure of the extracellular polysaccharide from xanthomonas campestris[J]. Carbohydrate Research, 1975, 45(1): 275-282.
|
| [27] |
LIU Guansheng, ZHONG Hua, AHMAD Zulfiqar, et al. Transport of engineered nanoparticles in porous media and its enhancement for remediation of contaminated groundwater[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(22): 2301-2378.
|
| [28] |
HE Feng, ZHAO Dongye. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers[J]. Environmental Science & Technology, 2007, 41(17): 6216-6221.
|
| [29] |
DERJAGUIN B, LANDAU L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes[J]. Progress in Surface Science, 1993, 43(1/2/3/4): 30-59.
|
| [30] |
VERWEY E J W. Theory of the stability of lyophobic colloids[J]. The Journal of Physical and Colloid Chemistry, 1947, 51(3): 631-636.
|
| [31] |
COMBA Silvia, DALMAZZO Davide, SANTAGATA Ezio, et al. Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media[J]. Journal of Hazardous Materials, 2011, 185(2/3): 598-605.
|