化工进展 ›› 2025, Vol. 44 ›› Issue (11): 6674-6687.DOI: 10.16085/j.issn.1000-6613.2024-1509
• 资源与环境化工 • 上一篇
王平1(
), 宋卫余1, 任红威2, 段二红2, 陈春茂1(
)
收稿日期:2024-09-14
修回日期:2024-10-14
出版日期:2025-11-25
发布日期:2025-12-08
通讯作者:
陈春茂
作者简介:王平(1987—),女,博士研究生,研究方向为环境化工、催化化学。E-mail:2023310805@student.cup.edu.cn。
基金资助:
WANG Ping1(
), SONG Weiyu1, REN Hongwei2, DUAN Erhong2, CHEN Chunmao1(
)
Received:2024-09-14
Revised:2024-10-14
Online:2025-11-25
Published:2025-12-08
Contact:
CHEN Chunmao
摘要:
开发了一种基于铝掺杂碳点(Al-CDs)的荧光探针,用于1-金刚烷羧酸作为模型环烷酸的定量检测方法。首先以L-精氨酸为碳源和氢键受体、乙二醇为氢键供体形成二元低共熔溶剂(B-DES),再添加AlCl3‧6H2O为铝源,合成三元低共熔溶剂(T-DES),最后T-DES经过水热法合成了Al-CDs。结果表明,通过低共熔溶剂(DES)合成Al-CDs,一方面可以使制备的Al-CDs尺寸分布均匀且结构稳定,另一方面可以有针对性地将目标官能团在Al-CDs表面进行修饰,同时实现了铝元素的成功掺杂。所制备的Al-CDs具有优异的荧光稳定性,对模型环烷酸具有良好的荧光响应,在0.5~20mmol/L的模型环烷酸浓度范围内呈线性关系,检出限0.163mmol/L,检测是通过Al-CDs和模型环烷酸之间发生配位作用产生的静态淬灭机制实现的,将Al-CDs应用于加标废水的检测,检测结果与气相色谱法结果一致。本工作为碳点在石化工业中的荧光检测提供了新的见解,拓宽了碳点在有机污染物检测中的应用。
中图分类号:
王平, 宋卫余, 任红威, 段二红, 陈春茂. 基于铝掺杂碳点的荧光探针用于环烷酸的定量检测[J]. 化工进展, 2025, 44(11): 6674-6687.
WANG Ping, SONG Weiyu, REN Hongwei, DUAN Erhong, CHEN Chunmao. A fluorescence probe based on aluminum-doped carbon dots for the quantitative detection of naphthenic acid[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6674-6687.
| 粒径分布/nm | 平均值/nm | 质量分数/% |
|---|---|---|
| 1~1.3 | 1.15 | 3.3 |
| 1.3~1.6 | 1.45 | 19.3 |
| 1.6~1.9 | 1.75 | 26.0 |
| 1.9~2.2 | 2.05 | 22.7 |
| 2.2~2.5 | 2.35 | 14.7 |
| 2.5~2.8 | 2.65 | 9.7 |
| 2.8~3.1 | 2.95 | 3.7 |
| 3.1~3.4 | 3.25 | 0.3 |
| 3.4~3.7 | 3.55 | 0.3 |
| 3.7~4 | 3.85 | 0 |
表1 Al-CDs的粒径分布数据
| 粒径分布/nm | 平均值/nm | 质量分数/% |
|---|---|---|
| 1~1.3 | 1.15 | 3.3 |
| 1.3~1.6 | 1.45 | 19.3 |
| 1.6~1.9 | 1.75 | 26.0 |
| 1.9~2.2 | 2.05 | 22.7 |
| 2.2~2.5 | 2.35 | 14.7 |
| 2.5~2.8 | 2.65 | 9.7 |
| 2.8~3.1 | 2.95 | 3.7 |
| 3.1~3.4 | 3.25 | 0.3 |
| 3.4~3.7 | 3.55 | 0.3 |
| 3.7~4 | 3.85 | 0 |
| 项目 | n | ||||
|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | |
| 环烷酸的浓度/mmol·L-1 | 5.58 | 5.56 | 5.58 | 5.55 | 5.57 |
| 平均浓度/mmol·L-1 | 5.57 | ||||
| 气相色谱法平均浓度/mmol·L-1 | 5.52 | ||||
表2 加标废水检测结果(n=1~5)
| 项目 | n | ||||
|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | |
| 环烷酸的浓度/mmol·L-1 | 5.58 | 5.56 | 5.58 | 5.55 | 5.57 |
| 平均浓度/mmol·L-1 | 5.57 | ||||
| 气相色谱法平均浓度/mmol·L-1 | 5.52 | ||||
| [1] | ZHANG Huanxin, CUI Lihua, SI Panpan, et al. Environmentally relevant concentrations of naphthenic acids initiate intestinal injury and gut microbiota dysbiosis in marine medaka (Oryzias melastigma)[J]. Aquatic Toxicology, 2024, 273: 106996. |
| [2] | HUGHES Sarah A, HUANG Rongfu, MAHAFFEY Ashley, et al. Comparison of methods for determination of total oil sands-derived naphthenic acids in water samples[J]. Chemosphere, 2017, 187: 376-384. |
| [3] | MESHREF Mohamed N A, IBRAHIM Mohamed D, HUANG Rongfu, et al. Fourier transform infrared spectroscopy as a surrogate tool for the quantification of naphthenic acids in oil sands process water and groundwater[J]. Science of the Total Environment, 2020, 734: 139191. |
| [4] | KLEMZ Ana Caroline, DAMAS Mayra Stéphanie Pascoal, GONZÁLEZ Sergio Yesid Gómez, et al. The use of oilfield gaseous byproducts as extractants of recalcitrant naphthenic acids from synthetic produced water[J]. Separation and Purification Technology, 2020, 248: 117123. |
| [5] | YEN Tin-Wing, MARSH William P, MACKINNON Michael D, et al. Measuring naphthenic acids concentrations in aqueous environmental samples by liquid chromatography[J]. Journal of Chromatography A, 2004, 1033(1): 83-90. |
| [6] | LU Weibing, EWANCHUK Andrea, Leonidas PEREZ-ESTRADA, et al. Limitation of fluorescence spectrophotometry in the measurement of naphthenic acids in oil sands process water[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2013, 48(4): 429-436. |
| [7] | WANG Chengjin, HUANG Rongfu, KLAMERTH Nikolaus, et al. Positive and negative electrospray ionization analyses of the organic fractions in raw and oxidized oil sands process-affected water[J]. Chemosphere, 2016, 165: 239-247. |
| [8] | SCOTT Angela C, YOUNG Rozlyn F, FEDORAK Phillip M. Comparison of GC-MS and FTIR methods for quantifying naphthenic acids in water samples[J]. Chemosphere, 2008, 73(8): 1258-1264. |
| [9] | MERLIN Mireya, GUIGARD Selma E, FEDORAK Phillip M. Detecting naphthenic acids in waters by gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 2007, 1140(1/2): 225-229. |
| [10] | GUTIERREZ-VILLAGOMEZ Juan Manuel, Juan VÁZQUEZ-MARTÍNEZ, Enrique RAMÍREZ-CHÁVEZ, et al. Profiling low molecular weight organic compounds from naphthenic acids, acid extractable organic mixtures, and oil sands process-affected water by SPME-GC-EIMS[J]. Journal of Hazardous Materials, 2020, 390: 122186. |
| [11] | MOHAMED Mohamed H, WILSON Lee D, HEADLEY John V, et al. Screening of oil sands naphthenic acids by UV-vis absorption and fluorescence emission spectrophotometry[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2008, 43(14): 1700-1705. |
| [12] | DUNCAN Kyle D, HAWKES Jeffrey A, BERG Mykelti, et al. Membrane sampling separates naphthenic acids from biogenic dissolved organic matter for direct analysis by mass spectrometry[J]. Environmental Science & Technology, 2022, 56(5): 3096-3105. |
| [13] | COLATI Keroly A P, DALMASCHIO Guilherme P, DE CASTRO Eustáquio V R, et al. Monitoring the liquid/liquid extraction of naphthenic acids in Brazilian crude oil using electrospray ionization FT-ICR mass spectrometry (ESI FT-ICR MS)[J]. Fuel, 2013, 108: 647-655. |
| [14] | HUANG Rongfu, CHEN Yuan, MESHREF Mohamed N A, et al. Characterization and determination of naphthenic acids species in oil sands process-affected water and groundwater from oil sands development area of Alberta, Canada[J]. Water Research, 2018, 128: 129-137. |
| [15] | HUANG Rongfu, MCPHEDRAN Kerry N, EL-DIN Mohamed Gamal. Ultra performance liquid chromatography ion mobility time-of-flight mass spectrometry characterization of naphthenic acids species from oil sands process-affected water[J]. Environmental Science & Technology, 2015, 49(19): 11737-11745. |
| [16] | BI Yanxia, XING Baolin, ZENG Huihui, et al. Eco-friendly sustainable fluorescent coal-based carbon dots as a highly selective probe for Cu2+ detection[J]. Fuel, 2024, 378: 132933. |
| [17] | WANG Yao, PAN Gengping, MIAO Chenfang, et al. Effective synthesis of fluorescent carbon dots and their application in controllable detection of deferasirox[J]. Microchemical Journal, 2024, 206: 111536. |
| [18] | LIANG Le, LIU Yongqing, HUANG Chan, et al. Fluorescent carbon dots based on nitrogen doped dialdehyde starch for highly selective Fe3+/glyphosate detection and its applications[J]. Microchemical Journal, 2024, 204: 111084. |
| [19] | WANG Fei, LI Chen, LI Yaqian, et al. Green synthesis of soybean residue-based nitrogen-chlorine co-doped carbon dots based on deep eutectic solvents: Construction of a PNP fluorescence detection system under the IFE mechanism[J]. Materials Research Bulletin, 2024, 180: 113041. |
| [20] | ZHANG Daohan, YANG Liang, LI Nan, et al. Detection of ciprofloxacin and pH by carbon dots and rapid, visual sensing analysis[J]. Food Chemistry, 2024, 459: 140313. |
| [21] | LIU Yize, LI Meiyu, ZHANG Ruoyao, et al. Quantitative detection of naphthenic acids in wastewater based on superior fluorescence performance of nitrogen-rich carbon quantum dots[J]. Science of the Total Environment, 2023, 885: 163773. |
| [22] | AYAZ Furkan, ALAŞ Melis Özge, Melike OĞUZ, et al. Aluminum doped carbon nanodots as potent adjuvants on the mammalian macrophages[J]. Molecular Biology Reports, 2019, 46(2): 2405-2415. |
| [23] | GAO Xiao, YU Hongquan, CONG Shanshan, et al. LED application and temperature-sensitive properties of white carbon dots doped with aluminum triacetylacetone without the N element[J]. Journal of Alloys and Compounds, 2024, 1002: 175405. |
| [24] | JAYAWEERA Supuli, YIN Ke, HU Xiao, et al. Fluorescent N/Al co-doped carbon dots from cellulose biomass for sensitive detection of manganese (Ⅶ)[J]. Journal of Fluorescence, 2019, 29(6): 1291-1300. |
| [25] | YU Chaojie, SUN Qinxing, WANG Zongzhen, et al. Aluminium-doped carbon dots for the simultaneous selective detection of five tetracycline antibiotics[J]. Journal of Fluorescence, 2024. |
| [26] | SHEIKHI Mehdi, RAFIEMANZELAT Fatemeh, SADEGHPOUR Narges, et al. Deep eutectic solvents based on L-arginine and glutamic acid as green catalysts and conductive agents for epoxy resins[J]. Journal of Molecular Liquids, 2021, 343: 117568. |
| [27] | DING Wei, WANG Tao, ZENG Peng, et al. Amino acids assisted to improve the voltage window of deep eutectic electrolyte formed by ethylene glycol and tetra methyl ammonium chloride[J]. Chemical Engineering Journal, 2023, 457: 141143. |
| [28] | IBRAHIM Rusul Khaleel, HAYYAN Maan, ALSAADI Mohammed Abdulhakim, et al. Physical properties of ethylene glycol-based deep eutectic solvents[J]. Journal of Molecular Liquids, 2019, 276: 794-800. |
| [29] | REN Hongwei, LI Meiyu, LIU Yize, et al. Nitrogen-rich carbon quantum dots (N-CQDs) based on natural deep eutectic solvents: Simultaneous detection and treatment of trace Co2+ under saline conditions[J]. Science of the Total Environment, 2022, 811: 152389. |
| [30] | REN Hongwei, LIU Yize, ZHANG Ruoyao, et al. Near-infrared carbon quantum dots from PEG-based deep eutectic solvents for high-accuracy quantitative analysis of naphthenic acids in wastewater[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109988. |
| [31] | ZHANG Ruoyao, ZHENG Yi, ZHANG Qiuya, et al. Nitrogen-doped carbon quantum dots based on deep eutectic solvents precursors to detect Cr6+ in environmental water[J]. Journal of Environmental Chemical Engineering, 2024, 12(3): 112391. |
| [32] | LIU Jinkun, LUO Yimeng, RAN Zhun, et al. Calcination temperature tuning of RTP and TADF with wide range of emission color from carbon dots confined in Al2O3 [J]. Chemical Engineering Journal, 2023, 474: 145597. |
| [33] | HE Pinyi, BAI Jianliang, QIN Fu, et al. Catalyst regulation of o-phenylenediamine-based carbon dots to achieve single red emission[J]. Applied Surface Science, 2024, 652: 159367. |
| [34] | YUAN Kang, ZHANG Xinghua, LI Xiang, et al. Great enhancement of red emitting carbon dots with B/Al/Ga doping for dual mode anti-counterfeiting[J]. Chemical Engineering Journal, 2020, 397: 125487. |
| [35] | IATSUNSKYI Igor, Mateusz KEMPIŃSKI, JANCELEWICZ Mariusz, et al. Structural and XPS characterization of ALD Al2O3 coated porous silicon[J]. Vacuum, 2015, 113: 52-58. |
| [36] | ARKIN Kamile, ZHENG Yuxin, BEI Yuyang, et al. Construction of dual-channel ratio sensing platform and molecular logic gate for visual detection of oxytetracycline based on biomass carbon dots prepared from cherry tomatoes stalk[J]. Chemical Engineering Journal, 2023, 464: 142552. |
| [37] | LIU Yongli, ZHOU Penghui, WU Yalin, et al. Fast and efficient “on-off-on” fluorescent sensor from N-doped carbon dots for detection of mercury and iodine ions in environmental water[J]. Science of the Total Environment, 2022, 827: 154357. |
| [38] | LIN Xiaofeng, XIONG Mogao, ZHANG Jingwen, et al. Carbon dots based on natural resources: Synthesis and applications in sensors[J]. Microchemical Journal, 2021, 160: 105604. |
| [39] | TANG Siyuan, CHEN Da, GUO Guoqiang, et al. A smartphone-integrated optical sensing platform based on Lycium ruthenicum derived carbon dots for real-time detection of Ag+ [J]. Science of the Total Environment, 2022, 825: 153913. |
| [40] | ZHOU Yan, CHEN Guoqing, MA Chaoqun, et al. A fluorescent probe based on carbon quantum dots with spectral selectivity for sensitive detection of Cr(Ⅵ) and Hg(Ⅱ) in environmental waters[J]. Dyes and Pigments, 2024, 222: 111845. |
| [41] | CHEN Xueqi, SONG Zihui, YUAN Bingnan, et al. Fluorescent carbon dots crosslinked cellulose nanofibril/chitosan interpenetrating hydrogel system for sensitive detection and efficient adsorption of Cu(Ⅱ) and Cr(Ⅵ)[J]. Chemical Engineering Journal, 2022, 430: 133154. |
| [42] | XU Ouwen, YANG Jing, SONG Hanyang, et al. Novel Zn/Co-N co-doped carbon quantum dot-based “on-off-on” fluorescent sensor for Fe(Ⅲ) and ascorbic acid[J]. Talanta Open, 2023, 7: 100162. |
| [43] | CHEN Yihong, WANG Zihan, LIANG Meiqi, et al. High-efficient nickel-doped lignin carbon dots as a fluorescent and smartphone-assisted sensing platform for sequential detection of Cr(Ⅵ) and ascorbic acid[J]. International Journal of Biological Macromolecules, 2024, 274: 133790. |
| [44] | LIN Min, ZOU Hongyan, YANG Tong, et al. An inner filter effect based sensor of tetracycline hydrochloride as developed by loading photoluminescent carbon nanodots in the electrospun nanofibers[J]. Nanoscale, 2016, 8(5): 2999-3007. |
| [45] | YUAN Yusheng, JIANG Junze, LIU Shaopu, et al. Fluorescent carbon dots for glyphosate determination based on fluorescence resonance energy transfer and logic gate operation[J]. Sensors and Actuators B: Chemical, 2017, 242: 545-553. |
| [1] | 刘颖, 包成, 张欣欣. 用于氢气提纯的改性载铜活性炭[J]. 化工进展, 2025, 44(S1): 413-421. |
| [2] | 秦菲, 张志, 宋光春, 王武昌, 李玉星, 王世鑫, 何思成, 王江妍. 水合物储氢分子动力学行为研究进展[J]. 化工进展, 2025, 44(S1): 112-123. |
| [3] | 马晓彪, 刘晗, 王伟欢, 苗培培, 季莹辉, 陈博阳, 彭晓伟, 许强, 靳凤英, 马明超, 王银斌, 郭春垒. 酸和磷复合改性对ZSM-5分子筛催化裂解性能的影响[J]. 化工进展, 2025, 44(S1): 197-204. |
| [4] | 赵思阳, 李陈冉, 刘洋. 副产C4预积炭调控MTO再生催化剂双烯选择性的工艺优化[J]. 化工进展, 2025, 44(S1): 205-212. |
| [5] | 李军良, 李悦, 孙道来. Cu/SiO2-Al2O3催化1,2-丁二醇加氢脱氧制备1-丁醇[J]. 化工进展, 2025, 44(S1): 222-231. |
| [6] | 王振, 张耀远, 吴芹, 史大昕, 陈康成, 黎汉生. 甲烷干重整用Ni/Al2O3基催化剂研究进展[J]. 化工进展, 2025, 44(9): 4979-4998. |
| [7] | 李志福, 杨晓东, 汪保财, 胡长流, 裴继凯, 阎龙芳, 武瑞芳, 张昌生, 王永钊. 耐高温缓凝剂HJ-1的合成及性能[J]. 化工进展, 2025, 44(9): 5092-5100. |
| [8] | 陈思铭, 刘景超, 钟志轩, 张新柱, 祝天浩, 彭毅勍, 游赛, 王一凯, 袁嘉骏, 张永春. 低共熔溶剂在二氧化碳捕集中的发展与应用[J]. 化工进展, 2025, 44(9): 5377-5390. |
| [9] | 陈子朝, 何方书, 胡强, 杨扬, 陈汉平, 杨海平. 甲烷干重整抗积炭Ni基催化剂研究进展[J]. 化工进展, 2025, 44(9): 4968-4978. |
| [10] | 吴博, 马琳萱, 张明峰, 曹丽娟, 周蕾, 王学重. 基于机器学习的超声衰减预测水滑石粒度分布[J]. 化工进展, 2025, 44(8): 4365-4374. |
| [11] | 张巍, 梁垚城, 伍乔, 付业昊, 尹艳山, 成珊, 阮敏, 刘涛, 周昭仪, 张凯凯, 李丹聪. 基于金属离子改性的Cu-SSZ-13催化剂在NH3-SCR脱硝中的应用[J]. 化工进展, 2025, 44(7): 3879-3891. |
| [12] | 王惠, 刘家旭. SSZ-39分子筛的合成及其NH3-SCR应用研究进展[J]. 化工进展, 2025, 44(7): 3892-3906. |
| [13] | 卢朋, 张迪, 刘瑶瑶, 于万金, 刘武灿, 张建君. 气相脱氟化氢合成C2氢氟烯烃催化剂的研究进展[J]. 化工进展, 2025, 44(7): 3907-3916. |
| [14] | 李翔, 吴张永, 蒋佳骏, 朱启晨, 龚湫. 海水基MoS2/SiC二元纳米流体摩擦学特性[J]. 化工进展, 2025, 44(7): 4050-4060. |
| [15] | 王恒, 卢春喜. 3.6Mt/a催化裂化旋风分离装置结构优选及运行效果分析[J]. 化工进展, 2025, 44(6): 3238-3246. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |