化工进展 ›› 2025, Vol. 44 ›› Issue (9): 5161-5173.DOI: 10.16085/j.issn.1000-6613.2024-1178
• 材料科学与技术 • 上一篇
吴淑娟1,2,3(
), 林家玮1, 李廉1,3(
), 王婷1
收稿日期:2024-07-22
修回日期:2024-09-02
出版日期:2025-09-25
发布日期:2025-09-30
通讯作者:
李廉
作者简介:吴淑娟(1986—),女,博士,副教授,硕士生导师,研究方向为绿色环保路面材料开发与利用、道路环境融合感知与智能养护、分子动力学仿真等。E-mail:wushujuan09@126.com。
基金资助:
WU Shujuan1,2,3(
), LIN Jiawei1, LI Lian1,3(
), WANG Ting1
Received:2024-07-22
Revised:2024-09-02
Online:2025-09-25
Published:2025-09-30
Contact:
LI Lian
摘要:
汽车废旧轮胎在道路行业中的广泛应用,可以实现资源的回收利用,减少黑色污染。本文目的是探讨橡胶骨料复合封层的长期水稳定性和抗滑性能,验证2D灰度值法确定路面构造深度的可行性。本文采用矩阵分析法,以橡胶颗粒处理方式、替代粒径、替代比例为影响因素,将湿轮磨耗值和负轮黏砂量作为评价指标,确定了微表处混合料的最佳橡胶颗粒替代方案;将微表处与碎石封层压实形成橡胶骨料复合封层,并对其耐磨耗性能、抗车辙性能、长期水稳定性和抗滑性能进行了分析。结果表明,采用NaOH溶液浸泡的橡胶颗粒(2~4mm)替代碎石(2.36~4.75mm)的最佳量为30%,由此制备的橡胶骨料复合封层具有较高的耐磨耗性能、抗车辙性能、抗滑性能和长期抗冻融性能。采用2D灰度值法确定的经验系数α值为0.92,相关系数为0.989,验证了通过经验系数α确定路面构造深度是可行的。橡胶骨料复合封层与普通复合封层相比,造价有所增加,但是幅度很小。
中图分类号:
吴淑娟, 林家玮, 李廉, 王婷. 橡胶骨料复合封层长期水稳定性及抗滑性能[J]. 化工进展, 2025, 44(9): 5161-5173.
WU Shujuan, LIN Jiawei, LI Lian, WANG Ting. Long-term water stability and skid resistance of rubber aggregate composite seal[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5161-5173.
| 实验项目 | 实测值 | 技术要求 | 测试方法[ | |
|---|---|---|---|---|
| 微表处乳化沥青 | 碎石封层乳化沥青 | |||
| 筛上剩余量(1.18mm筛)/% | 0.07 | 0.07 | ≤0.1 | T0652—1993 |
| 电荷 | 阳离子(+) | 阳离子(+) | 正电荷 | T0653—1993 |
| 蒸发残留物质量分数/% | 62.14 | 66.75 | ≥55 | T0610—2011 |
| 蒸发残留物性质 | ||||
| 针入度(100g,25℃,5s)/0.1mm | 70 | 66.5 | 45~150 | T0604—2011 |
| 软化点/℃ | 57.5 | 59.5 | ≥53 | T0606—2011 |
| 延度(5℃)/cm | 150 | 138.59 | ≥20 | T0605—2011 |
| 贮存稳定性 | ||||
| 1天/% | 0.6 | 0.55 | ≤1 | T0655—1993 |
| 5天/% | 4.2 | 3.17 | ≤5 | |
表1 乳化沥青技术指标
| 实验项目 | 实测值 | 技术要求 | 测试方法[ | |
|---|---|---|---|---|
| 微表处乳化沥青 | 碎石封层乳化沥青 | |||
| 筛上剩余量(1.18mm筛)/% | 0.07 | 0.07 | ≤0.1 | T0652—1993 |
| 电荷 | 阳离子(+) | 阳离子(+) | 正电荷 | T0653—1993 |
| 蒸发残留物质量分数/% | 62.14 | 66.75 | ≥55 | T0610—2011 |
| 蒸发残留物性质 | ||||
| 针入度(100g,25℃,5s)/0.1mm | 70 | 66.5 | 45~150 | T0604—2011 |
| 软化点/℃ | 57.5 | 59.5 | ≥53 | T0606—2011 |
| 延度(5℃)/cm | 150 | 138.59 | ≥20 | T0605—2011 |
| 贮存稳定性 | ||||
| 1天/% | 0.6 | 0.55 | ≤1 | T0655—1993 |
| 5天/% | 4.2 | 3.17 | ≤5 | |
| 外观 | 密度/kg⋅cm-3 | 表观密度/kg⋅cm-3 | 水分/% | 灰分/% | 丙酮抽提物/% | 纤维/% | 金属/% |
|---|---|---|---|---|---|---|---|
| 黑色颗粒 | 1120 | 1050 | ≤1.0 | ≤1.0 | ≤15 | ≤0.5 | ≤0.08 |
表2 橡胶颗粒参数(质量分数)
| 外观 | 密度/kg⋅cm-3 | 表观密度/kg⋅cm-3 | 水分/% | 灰分/% | 丙酮抽提物/% | 纤维/% | 金属/% |
|---|---|---|---|---|---|---|---|
| 黑色颗粒 | 1120 | 1050 | ≤1.0 | ≤1.0 | ≤15 | ≤0.5 | ≤0.08 |
| 筛孔尺寸/mm | MS-3级配上限/% | MS-3级配下限/% | 合成级配/% |
|---|---|---|---|
| 9.5 | 100 | 100 | 100 |
| 4.75 | 90 | 70 | 80 |
| 2.36 | 70 | 45 | 58 |
| 1.18 | 50 | 28 | 38 |
| 0.6 | 34 | 19 | 26 |
| 0.3 | 25 | 12 | 18 |
| 0.15 | 18 | 7 | 12 |
| 0.075 | 15 | 6 | 10 |
表3 矿料通过率
| 筛孔尺寸/mm | MS-3级配上限/% | MS-3级配下限/% | 合成级配/% |
|---|---|---|---|
| 9.5 | 100 | 100 | 100 |
| 4.75 | 90 | 70 | 80 |
| 2.36 | 70 | 45 | 58 |
| 1.18 | 50 | 28 | 38 |
| 0.6 | 34 | 19 | 26 |
| 0.3 | 25 | 12 | 18 |
| 0.15 | 18 | 7 | 12 |
| 0.075 | 15 | 6 | 10 |
| 实验序号 | 因素 | ||
|---|---|---|---|
| A/mm | B/% | C | |
| 1 | 2.36~4.75 | 20 | 不处理 |
| 2 | 2.36~4.75 | 30 | NaOH预处理 |
| 3 | 2.36~4.75 | 40 | NaClO预处理 |
| 4 | 1.18~2.36 | 20 | NaOH预处理 |
| 5 | 1.18~2.36 | 30 | NaClO预处理 |
| 6 | 1.18~2.36 | 40 | 不处理 |
| 7 | 0.3~0.6 | 20 | NaClO预处理 |
| 8 | 0.3~0.6 | 30 | 不处理 |
| 9 | 0.3~0.6 | 40 | NaOH预处理 |
表4 正交实验
| 实验序号 | 因素 | ||
|---|---|---|---|
| A/mm | B/% | C | |
| 1 | 2.36~4.75 | 20 | 不处理 |
| 2 | 2.36~4.75 | 30 | NaOH预处理 |
| 3 | 2.36~4.75 | 40 | NaClO预处理 |
| 4 | 1.18~2.36 | 20 | NaOH预处理 |
| 5 | 1.18~2.36 | 30 | NaClO预处理 |
| 6 | 1.18~2.36 | 40 | 不处理 |
| 7 | 0.3~0.6 | 20 | NaClO预处理 |
| 8 | 0.3~0.6 | 30 | 不处理 |
| 9 | 0.3~0.6 | 40 | NaOH预处理 |
| 实验序号 | 湿轮磨耗值/g·m-2 | 负轮黏砂量/g·m-2 |
|---|---|---|
| 1 | 122.22 | 350.38 |
| 2 | 95.31 | 395.02 |
| 3 | 112.51 | 672.80 |
| 4 | 112.51 | 385.79 |
| 5 | 138.99 | 387.65 |
| 6 | 439.02 | 389.52 |
| 7 | 475.20 | 341.06 |
| 8 | 216.64 | 367.77 |
| 9 | 116.93 | 273.97 |
表5 正交实验结果
| 实验序号 | 湿轮磨耗值/g·m-2 | 负轮黏砂量/g·m-2 |
|---|---|---|
| 1 | 122.22 | 350.38 |
| 2 | 95.31 | 395.02 |
| 3 | 112.51 | 672.80 |
| 4 | 112.51 | 385.79 |
| 5 | 138.99 | 387.65 |
| 6 | 439.02 | 389.52 |
| 7 | 475.20 | 341.06 |
| 8 | 216.64 | 367.77 |
| 9 | 116.93 | 273.97 |
| 指标 | 参数 | A | B | C |
|---|---|---|---|---|
| 湿轮磨耗值 | Ki1 | 110.013 | 248.265 | 259.295 |
| Ki2 | 241.793 | 150.312 | 119.867 | |
| Ki3 | 269.591 | 222.820 | 242.234 | |
| Ri | 159.578 | 97.953 | 139.428 | |
| 优水平 | A1 | B2 | C2 | |
| 负轮黏砂量 | Ki1 | 472.765 | 359.078 | 369.225 |
| Ki2 | 387.655 | 383.513 | 351.623 | |
| Ki3 | 327.601 | 445.430 | 467.174 | |
| Ri | 145.163 | 86.353 | 115.551 | |
| 优水平 | A3 | B1 | C2 |
表6 极差分析结果
| 指标 | 参数 | A | B | C |
|---|---|---|---|---|
| 湿轮磨耗值 | Ki1 | 110.013 | 248.265 | 259.295 |
| Ki2 | 241.793 | 150.312 | 119.867 | |
| Ki3 | 269.591 | 222.820 | 242.234 | |
| Ri | 159.578 | 97.953 | 139.428 | |
| 优水平 | A1 | B2 | C2 | |
| 负轮黏砂量 | Ki1 | 472.765 | 359.078 | 369.225 |
| Ki2 | 387.655 | 383.513 | 351.623 | |
| Ki3 | 327.601 | 445.430 | 467.174 | |
| Ri | 145.163 | 86.353 | 115.551 | |
| 优水平 | A3 | B1 | C2 |
| 构造深度/mm | 测量值 | 计算值 | 差值 |
|---|---|---|---|
| 1 | 0.673 | 0.691 | 0.018 |
| 2 | 0.722 | 0.723 | 0.001 |
| 3 | 0.667 | 0.691 | 0.024 |
| 4 | 0.695 | 0.702 | 0.007 |
| 5 | 0.711 | 0.670 | 0.041 |
| 6 | 0.708 | 0.702 | 0.006 |
| 7 | 0.800 | 0.715 | 0.085 |
| 8 | 0.757 | 0.697 | 0.06 |
| 9 | 0.788 | 0.728 | 0.06 |
| 10 | 0.746 | 0.671 | 0.075 |
表7 验证α的结果
| 构造深度/mm | 测量值 | 计算值 | 差值 |
|---|---|---|---|
| 1 | 0.673 | 0.691 | 0.018 |
| 2 | 0.722 | 0.723 | 0.001 |
| 3 | 0.667 | 0.691 | 0.024 |
| 4 | 0.695 | 0.702 | 0.007 |
| 5 | 0.711 | 0.670 | 0.041 |
| 6 | 0.708 | 0.702 | 0.006 |
| 7 | 0.800 | 0.715 | 0.085 |
| 8 | 0.757 | 0.697 | 0.06 |
| 9 | 0.788 | 0.728 | 0.06 |
| 10 | 0.746 | 0.671 | 0.075 |
| [1] | 朱荣军. 人工砂混凝土配合比设计方法及抗裂性能的研究[D]. 福州: 福州大学, 2011. |
| ZHU Rongjun. Study for mix proportion design method of manufactured sand concrete and its cracking resistant behavior[D]. Fuzhou: Fuzhou University, 2011. | |
| [2] | Dóra MENTES, TÓTH Csenge Emese, Gábor NAGY, et al. Investigation of gaseous and solid pollutants emitted from waste tire combustion at different temperatures[J]. Waste Management, 2022, 149: 302-312. |
| [3] | ZHAO Shulan, LIU Menghan, MENG Xiuying, et al. Waste rubber-black pollution reframed as a global issue: Ecological challenges and sustainability initiatives[J]. Environmental Pollution, 2024, 356: 124291. |
| [4] | HASSAN Mohammad R, RODRIGUE Denis. Application of waste tire in construction: A road towards sustainability and circular economy[J]. Sustainability, 2024, 16(9): 3852. |
| [5] | LIU Shengjie, ZHOU Shengbo, PENG Aihong, et al. Analysis of the performance and mechanism of desulfurized rubber and low-density polyethylene compound-modified asphalt[J]. Journal of Applied Polymer Science, 2019, 136(45): 48194. |
| [6] | 郑凯翔. 隧道温拌阻燃橡胶沥青及其混合料设计与性能研究[D]. 西安: 长安大学, 2023. |
| ZHENG Kaixiang. Research on design and performance of warm-mix flame retardant rubber modified asphalt and its mixture used in tunnel[D]. Xi’an: Chang’an University, 2023. | |
| [7] | 马清文, 乐金朝, 姜燕. NaOH预处理对橡胶混凝土力学性能的影响[J]. 中外公路, 2011, 31(6): 229-233. |
| MA Qingwen, LE JinZhao, JIANG Yan. Effect of NaOH pretreatment on mechanical properties of rubber concrete[J]. Journal of China & Foreign Highway, 2011, 31(6): 229-233. | |
| [8] | 谢娟, 陈学儒, 罗浩宸, 等. 不同活化方式对橡胶沥青-集料黏附性的影响[J]. 表面技术, 2023, 52(9): 322-330. |
| XIE Juan, CHEN Xueru, LUO Haochen, et al. Effect of different activation methods on adhesion performance of rubber asphalt-aggregate[J]. Surface Technology, 2023, 52(9): 322-330. | |
| [9] | 李静, 谢娟, 马云龙. 基于涂层活化的橡胶粉改性沥青制备及性能试验研究[J]. 硅酸盐通报, 2018, 37(10): 3179-3186, 3192. |
| LI Jing, XIE Juan, MA Yunlong. Experimental investigation on preparation and performance of modified asphalt by crumb rubber of coating activation[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10): 3179-3186, 3192. | |
| [10] | ZHANG Peng, LI Dongna, LI Bo, et al. The properties of sodium-hypochlorite-activated crumb rubber and the influence of aging on the rheological properties of activated asphalt rubber[J]. Buildings, 2023, 13(3): 712. |
| [11] | RAJAGOPAL M R, BHAVYA M, Jyothi KUMARI G. Study on the impact of pre-treatment method and admixture on the mechanical and durability properties of crumb rubber concrete[C]//International Conference on Advances in Civil Engineering 2022. Chandwad, India. Almaty, Kazakhstan: AIP, 2024, 3010: 020010-1–020010-13. |
| [12] | 郭金科. 废旧橡胶粉干法微表处微观结构与宏观性能研究[D]. 济南: 山东交通学院, 2018. |
| GUO Jinke. Study on microstructure and macroscopic properties of waste rubber powder at brying micro-surfacing[D]. Jinan: Shandong Jiaotong University, 2018. | |
| [13] | ZHAO Meiling, ZHAO Zhijie. Study on noise reduction mechanism and surface performance of crumb rubber micro-surfacing material[J]. Key Engineering Materials, 2014, 599: 257-260. |
| [14] | 李微, 韩森, 孙培, 等. 橡胶-纤维微表处混合料路用性能及降噪特性研究[J]. 铁道科学与工程学报, 2017, 14(8): 1623-1631. |
| LI Wei, HAN Sen, SUN Pei, et al. Research on road performances and noise reduction characteristic of rubber-fiber micro-surfacing mixture[J]. Journal of Railway Science and Engineering, 2017, 14(8): 1623-1631. | |
| [15] | 王晨, 李秀君, 朱思杨, 等. 基于橡胶粉降噪微表处路用性能研究的配合比优化[J]. 上海理工大学学报, 2020, 42(3): 291-297. |
| WANG Chen, LI Xiujun, ZHU Siyang, et al. Mix ratio optimization for rubber powder noise reduction micro-surfacing based on road performance analysis[J]. Journal of University of Shanghai for Science and Technology, 2020, 42(3): 291-297. | |
| [16] | 肖飞鹏, 王涛, 王嘉宇, 等. 橡胶沥青路面降噪技术原理与研究进展[J]. 中国公路学报, 2019, 32(4): 73-91. |
| XIAO Feipeng, WANG Tao, WANG Jiayu, et al. Mechanism and research development of noise reduction technology of rubberized asphalt pavement[J]. China Journal of Highway and Transport, 2019, 32(4): 73-91. | |
| [17] | 王锦余. 废旧橡胶颗粒碎石封层材料设计与性能研究[D]. 长沙: 长沙理工大学, 2022. |
| WANG Jinyu. Study on design and performance of chip seal using recycled rubber particles as aggregate[D]. Changsha: Changsha University of Science & Technology, 2022. | |
| [18] | GHENI Ahmed A, LUSHER Steven M, ELGAWADY Mohamed A. Retention behavior of crumb rubber as an aggregate in innovative chip seal surfacing[J]. Journal of Cleaner Production, 2018, 197: 1124-1136. |
| [19] | POURHASSAN Alireza, GHENI Ahmed A, ELGAWADY Mohamed A. Raveling performance of conventional and rubberized chip seal under field and laboratory traffic loading[J]. Construction and Building Materials, 2023, 370: 130674. |
| [20] | 朱其涛. 掺加橡胶颗粒的双层碎石封层减振降噪性能研究[D]. 西安: 长安大学, 2017. |
| ZHU Qitao. Research on vibration and noise reduction performance of double chip seal with rubber particles[D]. Xi’an: Changan University, 2017. | |
| [21] | 季节, 刘禄厚, 索智, 等. 水性环氧树脂改性乳化沥青微表处性能[J]. 长安大学学报(自然科学版), 2017, 37(5): 23-30. |
| JI Jie, LIU Luhou, SUO Zhi, et al. Performances of micro-surfacing with waterborne epoxy resin modified emulsified asphalt[J]. Journal of Chang’an University (Natural Science Edition), 2017, 37(5): 23-30. | |
| [22] | 王坤, 崔亚新. 超薄复合封层罩面技术在城镇道路路面养护中的技术应用分析[J]. 城市道桥与防洪, 2020(8): 86-88, 12. |
| WANG Kun, CUI Yaxin. Analysis on technical application of ultrathin composite sealing overlay technology in maintenance of urban road pavement[J]. Urban Roads Bridges & Flood Control, 2020(8): 86-88, 12. | |
| [23] | 吴进良, 高彦芝, 叶磊, 等. 沥青复合封层罩面施工技术与质量控制[J]. 重庆交通大学学报(自然科学版), 2009, 28(6): 1046-1048. |
| WU Jinliang, GAO Yanzhi, YE Lei, et al. Asphalt composite seal overlay construction and quality control technology[J]. Journal of Chongqing Jiaotong University (Natural Science), 2009, 28(6): 1046-1048. | |
| [24] | 刘惠民. 新型复合改性乳化沥青及微表处性能研究[D]. 青岛: 青岛理工大学, 2021. |
| LIU Huimin. Research on new composite modified emulsified asphalt and its micro-surfacing performance[D]. Qingdao: Qingdao University of Technology, 2021. | |
| [25] | USMAN K R, HAININ M R, IDHAM M K, et al. Performance evaluation of asphalt micro surfacing—A review[J]. IOP Conference Series: Materials Science and Engineering, 2019, 527(1): 012052. |
| [26] | 李栓. 微表处混合料设计分析及级配优化研究[D]. 西安: 长安大学, 2008. |
| LI Shuan. Research on design of micro-surfacing mixture and gradation optimization[D]. Xi’an: Chang’an University, 2008. | |
| [27] | WU Shujuan, ZHENG Mulian, LI Lian, et al. Research on a laboratory technique to prepare a rejuvenating composite seal and test its long-term water stability[J]. Journal of Materials in Civil Engineering, 2024, 36(3): 04023631. |
| [28] | 何丽红, 赵智博, 李青林, 等. 水性环氧-SBR乳化沥青微表处混合料路用性能研究[J]. 化工新型材料, 2024, 52(2): 294-298. |
| HE Lihong, ZHAO Zhibo, LI Qinglin, et al. Pavement performance of waterborne epoxy-SBR emulsified asphalt micro-surfacing mixture[J]. New Chemical Materials, 2024, 52(2): 294-298. | |
| [29] | 王端宜, 李维杰, 张肖宁. 用数字图像技术评价和测量沥青路表面构造深度[J]. 华南理工大学学报(自然科学版), 2004, 32(2): 42-45. |
| WANG Duanyi, LI Weijie, ZHANG Xiaoning. Evaluation and measurement of asphalt pavement surface texture depth with digital image technique[J]. Journal of South China University of Technology (Natural Science), 2004, 32(2): 42-45. | |
| [30] | 黄志福, 翟晓静, 梁乃兴. 基于数字图像处理技术的沥青路面构造深度评价方法研究[J]. 合肥工业大学学报(自然科学版), 2017, 40(10): 1382-1388. |
| HUANG Zhifu, ZHAI Xiaojing, LIANG Naixing. Study of evaluation method of asphalt pavement structure depth based on digital image processing technology[J]. Journal of Hefei University of Technology (Natural Science), 2017, 40(10): 1382-1388. | |
| [31] | 郑木莲, 陈旺, 王海阳. 基于图像处理技术的低噪声微表处纹理与噪声评价[J]. 交通运输工程学报, 2023, 23(1): 80-92. |
| ZHENG Mulian, CHEN Wang, WANG Haiyang. Evaluation of texture and noise of low-noise micro-surface based on image processing technology[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 80-92. | |
| [32] | 中华人民共和国交通运输部. 公路工程沥青及沥青混合料试验规程: [S]. 北京: 人民交通出版社, 2011. |
| China Ministry of Transportation. Standard test methods of bitumen and bituminous mixtures for highway engineering: [S]. Beijing: Standards Press of China, 2021. | |
| [33] | 马瑞卿. 活化废胶粉改性沥青及混合料路用性能研究[D]. 重庆: 重庆交通大学, 2017. |
| MA Ruiqing. Study on the performance of activated waste rubber powder modified asphalt and asphalt mixture[D]. Chongqing: Chongqing Jiaotong University, 2017. | |
| [34] | 于凯, 张琛, 王欢, 等. 次氯酸钠氧化废轮胎胶粉对改性沥青性能的影响[J]. 环境工程学报, 2016, 10(1): 350-354. |
| YU Kai, ZHANG Chen, WANG Huan, et al. Influence of sodium hypochlorite oxidization of crumb tire rubber on performance of modified bitumen[J]. Chinese Journal of Environmental Engineering, 2016, 10(1): 350-354. | |
| [35] | Ovidijus ŠERNAS, VAITKUS Audrius, Deimantė KILAITĖ, et al. The effect of the crumb rubber type and amount on dry process modified asphalt mixture and on low-temperature cracking and high-temperature rutting[J]. International Journal of Pavement Engineering, 2023, 24(1): 2259574 |
| [36] | YOUSSF Osama, MILLS Julie E, HASSANLI Reza. Assessment of the mechanical performance of crumb rubber concrete[J]. Construction and Building Materials, 2016, 125: 175-183. |
| [37] | SUGIMAN Sugiman, RIZALDI Didin, MULYANTO Arif, et al. Water absorption and tensile properties of ground tire rubber/epoxy composites: Effect of surface treatment[J]. Plastics, Rubber and Composites, 2023, 52(4): 216-226. |
| [38] | 陈福丰. 开普封层在重庆市县乡公路中的应用研究[D]. 重庆: 重庆交通大学, 2009. |
| CHEN Fufeng. The research on application of Cape seal atcounty road in Chongqing[D]. Chongqing: Chongqing Jiaotong University, 2009. |
| [1] | 谢娟, 贺文, 赵勖丞, 李帅辉, 卢真真, 丁哲宇. 分子动力学模拟在沥青体系中的应用研究进展[J]. 化工进展, 2024, 43(8): 4432-4449. |
| [2] | 赵毅, 杨臻, 王佳, 李静雯, 郑煜. 沥青胶结料自愈合行为分子动力学模拟研究进展[J]. 化工进展, 2023, 42(2): 803-813. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |