化工进展 ›› 2024, Vol. 43 ›› Issue (12): 7078-7094.DOI: 10.16085/j.issn.1000-6613.2023-2075

• 资源与环境化工 • 上一篇    

耦合均相-异相类芬顿体系强化水体耐药伤寒沙门氏菌的杀灭

曾湘楚1,2,3,4(), 宁海潮1,2,3, 武哲1,2,3, 韦瑞松1,2,3, 银秀菊1,2,3()   

  1. 1.广西现代蚕桑丝绸协同创新中心,河池学院化学与生物工程学院,广西 河池 546300
    2.广西蚕桑生态学与 智能化技术应用重点实验室,河池学院化学与生物工程学院,广西 河池 546300
    3.微生物及植物资源开发利用广西高校重点实验室,河池学院化学与生物工程学院,广西 河池 546300
    4.丽水市农林科学研究院 化学生物中心,浙江 丽水 323000
  • 收稿日期:2023-11-28 修回日期:2024-03-07 出版日期:2024-12-15 发布日期:2025-01-11
  • 通讯作者: 银秀菊
  • 作者简介:曾湘楚(1990—),男,博士,讲师,研究方向为环境功能材料。E-mail:xiangchuzeng@163.com
  • 基金资助:
    广西现代蚕桑丝绸协同创新中心基金(2023GXCSSC03);河池学院高层次人才科研启动项目(2019GCC008)

Coupled homogeneous/heterogeneous Fenton-like system for enhanced inactivating of tetracycline-resistance Salmonella typhi

ZENG Xiangchu1,2,3,4(), NING Haichao1,2,3, WU Zhe1,2,3, WEI Ruisong1,2,3, YIN Xiuju1,2,3()   

  1. 1.Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, Guangxi, China
    2.Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, Guangxi, China
    3.Guangxi Colleges Universities Key Laboratory of Exploitation and Utilization of Microbial and Botanical Resources, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, Guangxi, China
    4.Lishui Institute of Agriculture and Forestry Sciences Chemical Biology Center, Lishui 323000, Zhejiang, China
  • Received:2023-11-28 Revised:2024-03-07 Online:2024-12-15 Published:2025-01-11
  • Contact: YIN Xiuju

摘要:

由于抗生素排放衍生的抗生素耐药细菌(ARB)入侵问题是生态环境面临的一个新挑战。基于均相、异相体系活化过氧单硫酸盐(PMS)的类芬顿反应在水体四环素(TC)的降解中得到了广泛的研究,但是针对耐四环素细菌杀灭的研究甚少。本文发现水体共存Cu(Ⅱ)与TC形成络合物活化PMS的均相Cu(Ⅱ)/PMS体系能实现对耐四环素伤寒沙门氏菌(TRST)的有效杀灭,但杀灭率仅为52%左右。而在Cu(Ⅱ)-TC-TRST三元污染物中加入制备的N、S共掺杂磁性炭(N/S-MC)后,N/S-MC活化PMS的异相N/S-MC/PMS体系能实现均相Cu(Ⅱ)/PMS体系效果的叠加而大幅度促进对TRST的杀灭。尽管存在Cu(Ⅱ)和TC的竞争,耦合均相-异相类芬顿体系能强化复合污染水中对TRST的杀灭,杀灭率可提高至99%以上。并且其主要通过类芬顿反应产生的活性氧(ROS)破坏TRST的细胞膜、细胞壁及耐药基因(ARGs)而实现TRST的杀灭并阻断其耐药基因的水平转移。均相、异相类芬顿体系中自由基(·SO4-、·OH、·O2-)和非自由基(1O2)途径都参与了对TRST的杀灭,但呈现自由基的主导作用。本文提出了一种耦合均相-异相类芬顿体系,对水体耐药细菌的杀灭呈现良好的效果。

关键词: 类芬顿反应, 过氧单硫酸盐, 均相和异相, 耐药细菌, 炭基催化剂

Abstract:

The invasion of antibiotic resistance bacteria (ARB) from the discharge of antibiotics is an emerging challenge to ecological environment. Fenton-like reactions based on the activation of peroxymonosulfate (PMS) by homogeneous and heterogeneous systems have been extensively studied in the degradation of tetracycline (TC) in water, however, there are few studies on the inactivating of tetracycline resistant bacteria. It was found that the homogeneous Cu(Ⅱ)/PMS system with coexisting Cu(‍Ⅱ) and TC to form cupric complex activated PMS could effectively inactivate tetracycline resistant Salmonella typhi (TRST), but the inactivation efficiency was only about 52%. After adding N/S co-doped magnetic carbon (N/S-MC) to Cu(Ⅱ)-TC-TRST ternary contaminants, the heterogeneous N/S-MC/PMS system could realize the superposition on the effect of homogeneous Cu(Ⅱ)/PMS system and greatly promote the inactivation of TRST. Despite the competition of Cu(Ⅱ) and TC, the coupling homogeneous and heterogeneous Fenton-like system could enhance the inactivation efficiency of TRST in the complex polluted water, and that increased to more than 99%. The ROS produced by Fenton-like reaction destroyed the cell membrane, cell wall and drug resistance genes (ARGs) of TRST, furthermore prevented its horizontal transfer. In the homogeneous and heterogeneous Fenton-like systems, both free radical (·SO4-, ·OH, ·O2-) and non-free radical (1O2) pathways participated in the inactivating of TRST, but exhibited the dominant role of free radicals. In this paper, a coupled homogeneous and heterogeneous Fenton-like system was proposed, which showed good efficacy in inactivating ARB in water.

Key words: Fenton-like reaction, peroxymonosulfate, homogeneous and heterogeneous, antibiotic resistance bacteria, carbon-based catalyst

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn