化工进展 ›› 2024, Vol. 43 ›› Issue (10): 5805-5819.DOI: 10.16085/j.issn.1000-6613.2023-1688
• 资源与环境化工 • 上一篇
刘亚雯(), 贾方旭(), 贾非睿, 刘晨雨, 赵星程, 姚宏
收稿日期:
2023-09-25
修回日期:
2023-11-24
出版日期:
2024-10-15
发布日期:
2024-10-29
通讯作者:
贾方旭
作者简介:
刘亚雯(2002—),女,硕士研究生,研究方向为厌氧氨氧化污水脱氮处理。E-mail:23121836@bjtu.edu.cn。
基金资助:
LIU Yawen(), JIA Fangxu(), JIA Feirui, LIU Chenyu, ZHAO Xingcheng, YAO Hong
Received:
2023-09-25
Revised:
2023-11-24
Online:
2024-10-15
Published:
2024-10-29
Contact:
JIA Fangxu
摘要:
生物处理法是污水处理领域的核心技术,其中的生物膜法因具有耐冲击负荷、污泥产量少、运行管理方便等优势,已在全球范围内得到广泛关注。生物膜载体作为微生物附着生长材料,在生物膜处理工艺中起到关键作用,直接影响工艺的处理效果。然而,目前所开发的生物膜载体大多只能为微生物提供适宜稳定的生态位,并不具有强化污水处理效果的能力。为此,本文围绕五种能够提高污染物降解效率的新型生物膜载体(缓释生物膜载体、氧化还原介体生物膜载体、磁性生物膜载体、亲水改性生物膜载体、亲电改性生物膜载体)进行讨论,详细阐述了其具体分类与作用机理,并针对其今后研究方向与未来发展提出建设性建议,以期为未来大范围提标改造污水处理厂提供理论参考。
中图分类号:
刘亚雯, 贾方旭, 贾非睿, 刘晨雨, 赵星程, 姚宏. 新型生物膜载体在污水处理中的研究现状[J]. 化工进展, 2024, 43(10): 5805-5819.
LIU Yawen, JIA Fangxu, JIA Feirui, LIU Chenyu, ZHAO Xingcheng, YAO Hong. Current research status of novel biofilm carriers in wastewater treatment[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5805-5819.
碳源缓释载体 | 填充量 | 反应器指标 /有效体积 | 进水指标 | 脱氮效果 | 参考文献 | |||
---|---|---|---|---|---|---|---|---|
pH | NO3--N /mg·L-1 | 温度 /℃ | 流速 /m·d-1 | |||||
小麦秸秆 | 103g | PVC柱/2.51L | — | 20~25 | 25±1 | 1.3 | NRRmax②= 5.3 × 104kg/(m3·d) | [ |
玉米芯 | 10g | PVC柱/11.55L | 7.5~8.5 | 25.3 | 27~33 | 9.3 | NRRmax=2.0 × 105kg/(m3·d) | [ |
稻壳 | 1000g | PVC柱/11.55L | 7.6~8.3 | 25 | 30~32 | 2.5 | NRRmax = 9.6 × 104kg/(m3·d) | [ |
腐朽木 | 200g | 玻璃柱/1.41L | 7.0 | 25 | 25±1 | 1.0 | NRRmax = 99.95% | [ |
PLA | 381.6g | 锥形瓶/1.00L | — | 50 | 30 | — | NRRave = 9.2 × 104kg/(m3·d) | [ |
PCL | 1000g | PBR①/2.50L | — | 30 | 25 | 11.9 | NRRmax = 7.3 × 105kg/(m3·d) | [ |
PBS | 90% | PBR/2.83L | — | 52.3±4.6 | 19±1 | 3.0 | NRRmax = 7.2 × 105kg/(m3·d) | [ |
PHB | — | —/1.18L | — | 150 | 20.8±1.1 | 60.0 | NRRmax = 9.1 × 105kg/(m3·d) | [ |
PHBV | 500g | PBR/1.13L | 7.5 | 15 | 25±2 | 12.0 | NRRmax=7.7 × 105kg/(m3·d) | [ |
PHBV/PLA | 62.5% | PBR/1.13L | 7.1~7.2 | 49.9±0.7 | 30±2 | 2.4 | NRRmax=3.7 × 105kg/(m3·d) | [ |
竹粉/PHBV(BP/PHBV) | 35% | PBR/0.55L | 7.5~7.8 | 15~18 | 25~28 | — | NRRave=1.9 × 105kg/(m3·d) | [ |
表1 碳源缓释载体类型及其表现性能
碳源缓释载体 | 填充量 | 反应器指标 /有效体积 | 进水指标 | 脱氮效果 | 参考文献 | |||
---|---|---|---|---|---|---|---|---|
pH | NO3--N /mg·L-1 | 温度 /℃ | 流速 /m·d-1 | |||||
小麦秸秆 | 103g | PVC柱/2.51L | — | 20~25 | 25±1 | 1.3 | NRRmax②= 5.3 × 104kg/(m3·d) | [ |
玉米芯 | 10g | PVC柱/11.55L | 7.5~8.5 | 25.3 | 27~33 | 9.3 | NRRmax=2.0 × 105kg/(m3·d) | [ |
稻壳 | 1000g | PVC柱/11.55L | 7.6~8.3 | 25 | 30~32 | 2.5 | NRRmax = 9.6 × 104kg/(m3·d) | [ |
腐朽木 | 200g | 玻璃柱/1.41L | 7.0 | 25 | 25±1 | 1.0 | NRRmax = 99.95% | [ |
PLA | 381.6g | 锥形瓶/1.00L | — | 50 | 30 | — | NRRave = 9.2 × 104kg/(m3·d) | [ |
PCL | 1000g | PBR①/2.50L | — | 30 | 25 | 11.9 | NRRmax = 7.3 × 105kg/(m3·d) | [ |
PBS | 90% | PBR/2.83L | — | 52.3±4.6 | 19±1 | 3.0 | NRRmax = 7.2 × 105kg/(m3·d) | [ |
PHB | — | —/1.18L | — | 150 | 20.8±1.1 | 60.0 | NRRmax = 9.1 × 105kg/(m3·d) | [ |
PHBV | 500g | PBR/1.13L | 7.5 | 15 | 25±2 | 12.0 | NRRmax=7.7 × 105kg/(m3·d) | [ |
PHBV/PLA | 62.5% | PBR/1.13L | 7.1~7.2 | 49.9±0.7 | 30±2 | 2.4 | NRRmax=3.7 × 105kg/(m3·d) | [ |
竹粉/PHBV(BP/PHBV) | 35% | PBR/0.55L | 7.5~7.8 | 15~18 | 25~28 | — | NRRave=1.9 × 105kg/(m3·d) | [ |
氧化还原介体生物膜载体 | 反应器类型/有效体积 | 进水指标 | 反应时间 /h | 表现性能 | 参考文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMs | 载体 材料 | 固定方法 | 固定量 | 填充量 | pH | 目标污染物 浓度/mg·L-1 | 温度 /℃ | 污染物 去除效果 | 重复 使用率 | |||
Q-GO | HDPE | 共混熔融 | 0.2%(质量分数) | 30% | MBBR/2.4 L | — | 苯酚/800 | — | 12 | 提高22% | — — | [ |
甲基橙/796.1~804.9 | 提高29% | |||||||||||
Q-BC | HDPE | 共混熔融 | 4%(质量分数) | 30% | AO-A①/1.6 L | 7.5~8.0 | 苯酚/844.1±8 | — | 4.2 | 提高8.3% | — | [ |
AQS | PUF | 化学共价法 | 0.014mmol/cm3 | 0.55g | 血清瓶/135mL | 8.0 | 苋菜红/48.4 | 37 | 11 | 提高5倍以上 | 10次重复使用后的脱色率仍保持在初始值的98.7%以上 | [ |
陶粒 | 吸附共价 偶联法 | 0.003μmol/cm3 | 1.3g | 血清瓶/135mL | 7.0 | AY 36/131.3 | 30 | 5 | 提高6.4倍 | 3次重复使用后的AY 36脱色率仍保持在初始值的98%以上 | [ | |
RR 2/215 .3 | 6 | 提高2.3倍 | ||||||||||
AR 27/211.4 | 7 | 提高2.7倍 | ||||||||||
AO 7/122.5 | 8 | 提高2.5倍 | ||||||||||
PETFC | 化学共价法 | 0.083mmol/cm3 | 0.4g | 血清瓶/135mL | 7.2 | AR 73/557 | 30 | 5 | 提高1.6倍 | 5次重复使用后的AR 18脱色率仍保持在初始值的93.7%以上 | [ | |
RR 2/615 | 提高1.7倍 | |||||||||||
AY 36/375 | 提高3.7倍 | |||||||||||
AR 27/605 | 提高2.4倍 | |||||||||||
NB/123 | 提高1.8倍 | |||||||||||
RGO-PUF | 化学共价法 | 0.106mmol/cm3 | 0.03g | 血清瓶/135mL | 7.5 | AR 18/120.9 | 30 | 3.3 | 提高4.5倍 | 8次重复使用后的脱色率仍保持在初始值的98.18%以上 | [ |
表2 氧化还原介体生物膜载体类型及其表现性能
氧化还原介体生物膜载体 | 反应器类型/有效体积 | 进水指标 | 反应时间 /h | 表现性能 | 参考文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMs | 载体 材料 | 固定方法 | 固定量 | 填充量 | pH | 目标污染物 浓度/mg·L-1 | 温度 /℃ | 污染物 去除效果 | 重复 使用率 | |||
Q-GO | HDPE | 共混熔融 | 0.2%(质量分数) | 30% | MBBR/2.4 L | — | 苯酚/800 | — | 12 | 提高22% | — — | [ |
甲基橙/796.1~804.9 | 提高29% | |||||||||||
Q-BC | HDPE | 共混熔融 | 4%(质量分数) | 30% | AO-A①/1.6 L | 7.5~8.0 | 苯酚/844.1±8 | — | 4.2 | 提高8.3% | — | [ |
AQS | PUF | 化学共价法 | 0.014mmol/cm3 | 0.55g | 血清瓶/135mL | 8.0 | 苋菜红/48.4 | 37 | 11 | 提高5倍以上 | 10次重复使用后的脱色率仍保持在初始值的98.7%以上 | [ |
陶粒 | 吸附共价 偶联法 | 0.003μmol/cm3 | 1.3g | 血清瓶/135mL | 7.0 | AY 36/131.3 | 30 | 5 | 提高6.4倍 | 3次重复使用后的AY 36脱色率仍保持在初始值的98%以上 | [ | |
RR 2/215 .3 | 6 | 提高2.3倍 | ||||||||||
AR 27/211.4 | 7 | 提高2.7倍 | ||||||||||
AO 7/122.5 | 8 | 提高2.5倍 | ||||||||||
PETFC | 化学共价法 | 0.083mmol/cm3 | 0.4g | 血清瓶/135mL | 7.2 | AR 73/557 | 30 | 5 | 提高1.6倍 | 5次重复使用后的AR 18脱色率仍保持在初始值的93.7%以上 | [ | |
RR 2/615 | 提高1.7倍 | |||||||||||
AY 36/375 | 提高3.7倍 | |||||||||||
AR 27/605 | 提高2.4倍 | |||||||||||
NB/123 | 提高1.8倍 | |||||||||||
RGO-PUF | 化学共价法 | 0.106mmol/cm3 | 0.03g | 血清瓶/135mL | 7.5 | AR 18/120.9 | 30 | 3.3 | 提高4.5倍 | 8次重复使用后的脱色率仍保持在初始值的98.18%以上 | [ |
磁性生物膜载体 | 反应器类型/ 有效体积 | 进水指标 | 反应时间 | 污染物去除效果 | 参考 文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
磁性材料 | 载体材料 | 固定方法 | 磁感应强度 | 填充量 | pH | 目标污染物 浓度/mg·L-1 | 温度 /℃ | ||||
Fe3O4@SiO2 | 多孔陶瓷 | 共混技术 | 0.008~0.01mT | 33.3% | BCOR①/1L | 6.0~8.0 | COD/1346.5~1371.2 | 25~30 | 30d | 提高3.2% | [ |
NH4+-N/474.1~493.8 | 提高5.6% | ||||||||||
Cr6+/1.482~1.489 | 20~30 | 提高5%~10% | [ | ||||||||
OA包覆Fe3O4颗粒 | PPCs | O/W悬浮聚合技术 | 1.01emu/g以下 | 10% | FIBBR/2L | 7.5~8.0 | NH4+-N/100 | — | 6d | 提高近20% | [ |
偶联剂包覆Fe3O4颗粒 | PVA | O/W悬浮聚合技术 | — | 8g | ICTFIBBR②/1.3L | — | COD/400 | — | 10h | 提高到91%以上 | [ |
OA包覆Fe3O4颗粒 | AS | 共混技术 | 20emu/g以下 | 8 片 | BCOR/1.5L | — | COD/300 | 25 | 90d | 提高17.15% | [ |
NH4+-N/308 | 提高16.1% | ||||||||||
TN/— | 提高11.58% | ||||||||||
Nd2Fe14B | PE | 共混技术 | 0.5mT | 25% | MBBR/46L | 7.5~8.0 | COD/300~388 | 9±1 | 8d | 提高3.6% | [ |
NH4+-N/20~30 | 提高16.2% |
表3 磁性生物膜载体类型及其表现性能
磁性生物膜载体 | 反应器类型/ 有效体积 | 进水指标 | 反应时间 | 污染物去除效果 | 参考 文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
磁性材料 | 载体材料 | 固定方法 | 磁感应强度 | 填充量 | pH | 目标污染物 浓度/mg·L-1 | 温度 /℃ | ||||
Fe3O4@SiO2 | 多孔陶瓷 | 共混技术 | 0.008~0.01mT | 33.3% | BCOR①/1L | 6.0~8.0 | COD/1346.5~1371.2 | 25~30 | 30d | 提高3.2% | [ |
NH4+-N/474.1~493.8 | 提高5.6% | ||||||||||
Cr6+/1.482~1.489 | 20~30 | 提高5%~10% | [ | ||||||||
OA包覆Fe3O4颗粒 | PPCs | O/W悬浮聚合技术 | 1.01emu/g以下 | 10% | FIBBR/2L | 7.5~8.0 | NH4+-N/100 | — | 6d | 提高近20% | [ |
偶联剂包覆Fe3O4颗粒 | PVA | O/W悬浮聚合技术 | — | 8g | ICTFIBBR②/1.3L | — | COD/400 | — | 10h | 提高到91%以上 | [ |
OA包覆Fe3O4颗粒 | AS | 共混技术 | 20emu/g以下 | 8 片 | BCOR/1.5L | — | COD/300 | 25 | 90d | 提高17.15% | [ |
NH4+-N/308 | 提高16.1% | ||||||||||
TN/— | 提高11.58% | ||||||||||
Nd2Fe14B | PE | 共混技术 | 0.5mT | 25% | MBBR/46L | 7.5~8.0 | COD/300~388 | 9±1 | 8d | 提高3.6% | [ |
NH4+-N/20~30 | 提高16.2% |
亲水改性生物膜载体 | 反应器类型/有效体积 | 进水指标 | 反应时间 | 表现性能 | 参考文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
载体 材料 | 改性 材料 | 改性 方法 | 接触角 /(°) | 填充量 | pH | 目标污染物浓度/mg·L-1 | 温度 /℃ | 表面生物膜情况 | 污染物去除效果 | |||
PUF | N-DMA | 共混 改性 | 66 | 25% | MBBR/2.6L | 7.5±0.2 | COD/— | 20~25 | 20d | 挂膜量提高1.3倍 | 提高到80%~86% | [ |
NH4+-N/20~25 | 提高到77%~91% | |||||||||||
聚砜中空 纤维膜 | 亲水性丙烯酰胺链 | 紫外光引发 接枝聚合 | 48 | — | BAF①/44L | 6.2~8.0 | COD/270~550 | 22~25 | 45d | 挂膜量提高1000mg TSS/L | 提高5%~20% | [ |
NH4+-N/50~88 | ||||||||||||
木质废弃物 | LPN等离子体 | 等离子体处理 | 0 | 10片 | 血清瓶/200mL | 7.4 | 甲苯/300 | 30 | 12h | 生物膜活性提高3.5倍 | 提高13% | [ |
K1 | 酸性重铬酸钾 | 氧化处理 | 41 | 50% | MBBR/5L | 7.3~8.2 | COD/700 | 8~20 | 40d | 挂膜量提高1.8倍 | 提高13% | [ |
NH4+-N/150 | 提高17% | |||||||||||
50% 硫酸 | 酸处理 | 62 | COD/700 | 挂膜量提高约1.5倍 | 提高12% | |||||||
NH4+-N/150 | 提高23% | |||||||||||
50% NaOH | 碱处理 | 75 | COD/700 | 挂膜量提高约0.5倍 | 提高48% | |||||||
NH4+-N/150 | 提高9% |
表4 亲水改性生物膜载体类型及其表现性能
亲水改性生物膜载体 | 反应器类型/有效体积 | 进水指标 | 反应时间 | 表现性能 | 参考文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
载体 材料 | 改性 材料 | 改性 方法 | 接触角 /(°) | 填充量 | pH | 目标污染物浓度/mg·L-1 | 温度 /℃ | 表面生物膜情况 | 污染物去除效果 | |||
PUF | N-DMA | 共混 改性 | 66 | 25% | MBBR/2.6L | 7.5±0.2 | COD/— | 20~25 | 20d | 挂膜量提高1.3倍 | 提高到80%~86% | [ |
NH4+-N/20~25 | 提高到77%~91% | |||||||||||
聚砜中空 纤维膜 | 亲水性丙烯酰胺链 | 紫外光引发 接枝聚合 | 48 | — | BAF①/44L | 6.2~8.0 | COD/270~550 | 22~25 | 45d | 挂膜量提高1000mg TSS/L | 提高5%~20% | [ |
NH4+-N/50~88 | ||||||||||||
木质废弃物 | LPN等离子体 | 等离子体处理 | 0 | 10片 | 血清瓶/200mL | 7.4 | 甲苯/300 | 30 | 12h | 生物膜活性提高3.5倍 | 提高13% | [ |
K1 | 酸性重铬酸钾 | 氧化处理 | 41 | 50% | MBBR/5L | 7.3~8.2 | COD/700 | 8~20 | 40d | 挂膜量提高1.8倍 | 提高13% | [ |
NH4+-N/150 | 提高17% | |||||||||||
50% 硫酸 | 酸处理 | 62 | COD/700 | 挂膜量提高约1.5倍 | 提高12% | |||||||
NH4+-N/150 | 提高23% | |||||||||||
50% NaOH | 碱处理 | 75 | COD/700 | 挂膜量提高约0.5倍 | 提高48% | |||||||
NH4+-N/150 | 提高9% |
亲电改性生物膜载体 | 反应器类型/有效体积 | 进水指标 | 反应时间 | 表现性能 | 参考文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
载体材料 | 改性材料 | zeta电位 /mV | 接触角 /(°) | 填充量 /% | pH | 目标污染物 浓度/mg·L-1 | 温度 /℃ | 表面生物膜情况 | 污染物 去除效果 | |||
HDPE | PQAS-10 | 5.1~21.5 | 59.8 ± 4.2 | 30 | MBBR/1.6L | 7.5~8.0 | NH4+-N/41.8~48.6 | 25 | 18d | 挂膜量提高16% | 提高41% | [ |
TN/41.8~48.6 | 20d | 提高23% | ||||||||||
CPAM | 1.5~14.2 | 58.8 ± 2.8 | NH4+-N/41.8~48.6 | 18d | 挂膜量提高6.4% | 提高16% | ||||||
TN/41.8~48.6 | 20d | 提高14% | ||||||||||
PE | PQAS-10、Fe2O3 | 11.7 | 60.2 | 30 | IFFAS①/12.56L | 7.0~8.0 | COD/200±12 | 16~20 | 90d | 挂膜量提高7.3% | 提高2.5% | [ |
NH4+-N/50±3.2 | 提高0.4% | |||||||||||
TN/— | 提高2.6% | |||||||||||
BF | N(C2H5)2 | 10.6 | 63.08 | — | — | — | — | — | — | 挂膜量提高1倍左右 | — | [ |
FeC6H5O7 | -8.67 | 64.85 | 12 | SBR②/10L | 7.6±0.1 | TN/26.72±0.22 | 29±1 | 20d | 挂膜量提高0.87倍左右 | 提高16% | [ | |
COPUF | FeCl3 | — | 62.12 | 5 | —/6L | — | NH4+-N/24 | — | 12h | 挂膜量提高60% | 提高10% | [ |
表5 亲电改性生物膜载体类型及其表现性能
亲电改性生物膜载体 | 反应器类型/有效体积 | 进水指标 | 反应时间 | 表现性能 | 参考文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
载体材料 | 改性材料 | zeta电位 /mV | 接触角 /(°) | 填充量 /% | pH | 目标污染物 浓度/mg·L-1 | 温度 /℃ | 表面生物膜情况 | 污染物 去除效果 | |||
HDPE | PQAS-10 | 5.1~21.5 | 59.8 ± 4.2 | 30 | MBBR/1.6L | 7.5~8.0 | NH4+-N/41.8~48.6 | 25 | 18d | 挂膜量提高16% | 提高41% | [ |
TN/41.8~48.6 | 20d | 提高23% | ||||||||||
CPAM | 1.5~14.2 | 58.8 ± 2.8 | NH4+-N/41.8~48.6 | 18d | 挂膜量提高6.4% | 提高16% | ||||||
TN/41.8~48.6 | 20d | 提高14% | ||||||||||
PE | PQAS-10、Fe2O3 | 11.7 | 60.2 | 30 | IFFAS①/12.56L | 7.0~8.0 | COD/200±12 | 16~20 | 90d | 挂膜量提高7.3% | 提高2.5% | [ |
NH4+-N/50±3.2 | 提高0.4% | |||||||||||
TN/— | 提高2.6% | |||||||||||
BF | N(C2H5)2 | 10.6 | 63.08 | — | — | — | — | — | — | 挂膜量提高1倍左右 | — | [ |
FeC6H5O7 | -8.67 | 64.85 | 12 | SBR②/10L | 7.6±0.1 | TN/26.72±0.22 | 29±1 | 20d | 挂膜量提高0.87倍左右 | 提高16% | [ | |
COPUF | FeCl3 | — | 62.12 | 5 | —/6L | — | NH4+-N/24 | — | 12h | 挂膜量提高60% | 提高10% | [ |
1 | CERETTA Maria Belen, NERCESSIAN Débora, WOLSKI Erika A. Current trends on role of biological treatment in integrated treatment technologies of textile wastewater[J]. Frontiers in Microbiology, 2021, 12: 651025. |
2 | 贾方旭, 刘莹洁, 于晓华, 等. 尿素废水生物处理技术原理与工艺研究进展[J]. 中国环境科学, 2020, 40(12): 5270-5279. |
JIA Fangxu, LIU Yingjie, YU Xiaohua, et al. Principle and application of urea wastewater biological treatment technology[J]. China Environmental Science, 2020, 40(12): 5270-5279. | |
3 | GODZIEBA Martyna, Monika ZUBROWSKA-SUDOL, WALCZAK Justyna, et al. Development of microbial communities in biofilm and activated sludge in a hybrid reactor[J]. Scientific Reports, 2022, 12(1): 12558. |
4 | LAZAROVA V, MANEM J. Biofilm characterization and activity analysis in water and wastewater treatment[J]. Water Research, 1995, 29(10): 2227-2245. |
5 | LE Thai-Hoang, Charmaine NG, TRAN Ngoc Han, et al. Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems[J]. Water Research, 2018, 145: 498-508. |
6 | 康丽娜, 王海杰. 生物膜法在微污染水源水预处理中的研究进展[J]. 化工进展, 2012, 31(S2): 223-227. |
KANG Lina, WANG Haijie. Research progress of biofilm technology in micro-polluted source water pretreatment[J]. Chemical Industry and Engineering Progress, 2012, 31(S2): 223-227. | |
7 | SODHI Vijay, SINGH Charanjit, CHEEMA Puneet Pal Singh, et al. Simultaneous sludge minimization, pollutant and nitrogen removal using integrated MBBR configuration for tannery wastewater treatment[J]. Bioresource Technology, 2021, 341: 125748. |
8 | 曹新, 苏可欣, 宋新山, 等. 不同填料负载微生物去除地表水氨氮的研究[J]. 环境科学学报, 2022, 42(1): 213-221. |
CAO Xin, SU Kexin, SONG Xinshan, et al. Different fillers loaded with microorganisms to remove ammonia nitrogen in surface water[J]. Acta Scientiae Circumstantiae, 2022, 42(1): 213-221. | |
9 | GAO Dawen, LI Yuqi, LIANG Hong. Biofilm carriers for anaerobic ammonium oxidation: Mechanisms, applications, and roles in mainstream systems[J]. Bioresource Technology, 2022, 353: 127115. |
10 | 唐云飞, 王荣昌, 赵建夫. 水平流生物膜反应器处理村镇污水的运行特性[J]. 中国给水排水, 2013, 29(7): 24-28. |
TANG Yunfei, WANG Rongchang, ZHAO Jianfu. Performance of horizontal flow biofilm reactor for treatment of decentralized rural sewage[J]. China Water & Wastewater, 2013, 29(7): 24-28. | |
Treatment of Decentralized Rural Sewage[J]. China Water & Wastewater, 2013, 29(7): 24–28. | |
11 | LI Jianwei, PENG Yongzhen, ZHANG Liang, et al. Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor[J]. Water Research, 2019, 160: 178-187. |
12 | RENNER Lars D, WEIBEL Douglas B. Physicochemical regulation of biofilm formation[J]. MRS Bulletin, 2011, 36(5): 347-355. |
13 | Sajjad AL-AMSHAWEE, BIN MOHD YUNUS Mohd Yusri. Geometry of biofilm carriers: A systematic review deciding the best shape and pore size[J]. Groundwater for Sustainable Development, 2021, 12: 100520. |
14 | AL-AMSHAWEE S K, YUNUS M Y, AZODDEIN A A. A novel microbial biofilm carrier for wastewater remediation[J]. IOP Conference Series: Materials Science and Engineering, 2020, 736(7): 072006. |
15 | LEENEN Emily J T M, DOS SANTOS Vítor A P, GROLLE Katja C F, et al. Characteristics of and selection criteria for support materials for cell immobilization in wastewater treatment[J]. Water Research, 1996, 30(12): 2985-2996. |
16 | Tamás FELFÖLDI, JURECSKA Laura, VAJNA Balázs, et al. Texture and type of polymer fiber carrier determine bacterial colonization and biofilm properties in wastewater treatment[J]. Chemical Engineering Journal, 2015, 264: 824-834. |
17 | FENG Quan, WANG Yuxiao, WANG Tianmin, et al. Effects of packing rates of cubic-shaped polyurethane foam carriers on the microbial community and the removal of organics and nitrogen in moving bed biofilm reactors[J]. Bioresource Technology, 2012, 117: 201-207. |
18 | LEWANDOWSKI Z, BOLTZ J P. Biofilms in water and wastewater treatment[M]//Treatise on Water Science. Amsterdam: Elsevier, 2011: 529-570. |
19 | 邓宇, 杨东海, 陈慧珍, 等. 生物载体在污水处理中的研究进展[J]. 环境科学与管理, 2022, 47(4): 107-112. |
DENG Yu, YANG Donghai, CHEN Huizhen, et al. Research progress of biological fillers in wastewater treatment[J]. Environmental Science and Management, 2022, 47(4): 107-112. | |
20 | ZHU Ye, MIAO Lingzhan. Effects of specific surface area of artificial carriers on carbon metabolism activity of biofilm[J]. Water, 2022, 14(17): 2735. |
21 | LEVSTEK Meta, PLAZL Igor, ROUSE Joseph D. Estimation of the specific surface area for a porous carrier[J]. Acta Chimica Slovenica, 2010, 57(1): 45-51. |
22 | LARIYAH M S, MOHIYADEN H A, HAYDER G, et al. Application of moving bed biofilm reactor (MBBR) and integrated fixed activated sludge (IFAS) for biological river water purification system: A short review[J]. IOP Conference Series: Earth and Environmental Science, 2016, 32: 012005. |
23 | Fernando MORGAN-SAGASTUME. Biofilm development, activity and the modification of carrier material surface properties in moving-bed biofilm reactors (MBBRs) for wastewater treatment[J]. Critical Reviews in Environmental Science and Technology, 2018, 48(5): 439-470. |
24 | DEZOTTI M, LIPPEL G, BASSIN J P. Advanced biological processes for wastewater treatment: Emerging, consolidated technologies and introduction to molecular techniques[M]. Cham: Springer International Publishing, 2018: 37-74. |
25 | WANG Xin, XIA Kang, YANG Xiaojing, et al. Growth strategy of microbes on mixed carbon sources[J]. Nature Communications, 2019, 10(1): 1279. |
26 | LOUTET Slade A, CHAN Anson C K, KOBYLARZ Marek J, et al. The fate of intracellular metal ions in microbes[M]//Trace Metals and Infectious Diseases: The MIT Press, 2015: 39-56. |
27 | SOARES M Inês M, ABELIOVICH Aharon. Wheat straw as substrate for water denitrification[J]. Water Research, 1998, 32(12): 3790-3794. |
28 | XU Zuxin, SHAO Liu, YIN Hailong, et al. Biological denitrification using corncobs as a carbon source and biofilm carrier[J]. Water Environment Research: A Research Publication of the Water Environment Federation, 2009, 81(3): 242-247. |
29 | SHAO L, XU Z X, YIN H L, et al. Rice husk as carbon source and biofilm carrier for water denitrification[J]. Journal of Biotechnology, 2008, 136: S662. |
30 | 孙雅丽, 张国臣, 阎中, 等. 以腐朽木为碳源去除废水中硝酸盐氮的研究[J]. 环境科学, 2010, 31(6): 1494-1498. |
SUN Yali, ZHANG Guochen, YAN Zhong, et al. Removing nitrate-nitrogen from wastewater using rotten wood as carbon source[J]. Environmental Science, 2010, 31(6): 1494-1498. | |
31 | 范振兴, 王建龙. 利用聚乳酸作为反硝化固体碳源的研究[J]. 环境科学, 2009, 30(8): 2315-2319. |
FAN Zhenxing, WANG Jianlong. Denitrification using polylactic acid as solid carbon source[J]. Environmental Science, 2009, 30(8): 2315-2319. | |
32 | LUO Fangzhou, ZHANG Jinsen, WEI Qi, et al. Insights into the relationship between denitrification and organic carbon release of solid-phase denitrification systems: Mechanism and microbial characteristics[J]. Bioresource Technology, 2022, 364: 128044. |
33 | ZHU Songming, DENG Yale, RUAN Yunjie, et al. Biological denitrification using poly(butylene succinate) as carbon source and biofilm carrier for recirculating aquaculture system effluent treatment[J]. Bioresource Technology, 2015, 192: 603-610. |
34 | GUTIERREZ-WING Maria Teresa, MALONE Ronald F, RUSCH Kelly A. Evaluation of polyhydroxybutyrate as a carbon source for recirculating aquaculture water denitrification[J]. Aquacultural Engineering, 2012, 51: 36-43. |
35 | XU Zhongshuo, DAI Xiaohu, CHAI Xiaoli. Biological denitrification using PHBV polymer as solid carbon source and biofilm carrier[J]. Biochemical Engineering Journal, 2019, 146: 186-193. |
36 | WANG Feng, ZHOU Lu, ZHAO Jianqiang. The performance of biocarrier containing zinc nanoparticles in biofilm reactor for treating textile wastewater[J]. Process Biochemistry, 2018, 74: 125-131. |
37 | 曾武. 内掺微量营养物生物膜载体的制备及应用研究[D]. 唐山: 河北联合大学, 2012. |
ZENG Wu. The preparation and application of micronutrients mixed within the biofilm carrier[D]. Tangshan: Hebei United University, 2012. | |
38 | 龙腾锐, 郭劲松. 废水处理粒状酶促填料的生产方法: CN1187469A[P]. 2002-02-20. |
Long Tengrui, Guo Jingsong. Method of producing granular enzymetic filling for treating waste water: CN1187469A[P]. 2002-02-20. | |
39 | 赖震宏. 需氧生物催化填料的开发与特性试验研究[D]. 重庆: 重庆大学, 2004. |
LAI Zhenhong. Experimental study on the development and properties of promoter-media for aerobium[D]. Chongqing: Chongqing University, 2004. | |
40 | OVEZ Bikem. Batch biological denitrification using Arundo donax, Glycyrrhiza glabra, and Gracilaria verrucosa as carbon source[J]. Process Biochemistry, 2006, 41(6): 1289-1295. |
41 | 王玥, 秦帆, 唐燕华, 等. 农业废弃物作为反硝化脱氮外加碳源的研究[J]. 林业工程学报, 2019, 4(5): 146-151. |
WANG Yue, QIN Fan, TANG Yanhua, et al. Agricultural wastes as additional carbon sources for denitrification[J]. Journal of Forestry Engineering, 2019, 4(5): 146-151. | |
42 | XU Zhongshuo, DAI Xiaohu, CHAI Xiaoli. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes[J]. Science of the Total Environment, 2018, 634: 195-204. |
43 | CHU Libing, WANG Jianlong. Denitrification of groundwater using PHBV blends in packed bed reactors and the microbial diversity[J]. Chemosphere, 2016, 155: 463-470. |
44 | WU Heng, ZHANG Qian, CHEN Xue, et al. Effect of HRT and BDPs types on nitrogen removal and microbial community of solid carbon source SND process treating low carbon/nitrogen domestic wastewater[J]. Journal of Water Process Engineering, 2021, 40: 101854. |
45 | WU Weizhong, YANG Feifei, YANG Luhua. Biological denitrification with a novel biodegradable polymer as carbon source and biofilm carrier[J]. Bioresource Technology, 2012, 118: 136-140. |
46 | FU Xinrong, HOU Rongrong, YANG Peng, et al. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review[J]. Science of the Total Environment, 2022, 817: 153061. |
47 | COLEMAN Joseph E. Zinc enzymes[J]. Current Opinion in Chemical Biology, 1998, 2(2): 222-234. |
48 | GUERINOT Mary Lou. Microbial iron transport[J]. Annual Review of Microbiology, 1994, 48: 743-772. |
49 | GLASS Jennifer B, ORPHAN Victoria J. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide[J]. Frontiers in Microbiology, 2012, 3: 61. |
50 | SHEWRY Peter R. Biochemistry & molecular biology of plants. B.B. Buchanan, W. gruissem and R.L. Jones (eds), 2000[J]. Plant Growth Regulation, 2001, 35(1): 105-106. |
51 | OSMAN Deenah, COOKE Anastasia, YOUNG Tessa R, et al. The requirement for cobalt in vitamin B12: A paradigm for protein metalation[J]. Biochimica et Biophysica Acta: Molecular Cell Research, 2021, 1868(1): 118896. |
52 | 孟雪征, 赖震宏, 龙腾锐. 金属离子对好氧活性污泥活性的影响[J]. 安全与环境学报, 2004, 4(6): 43-45. |
MENG Xuezheng, LAI Zhenhong, LONG Tengrui. Effects of mental ions on aerobic activated sludge activity[J]. Journal of Safety and Environment, 2004, 4(6): 43-45. | |
53 | LI Xiang, YUAN Yan, HUANG Yong, et al. A novel method of simultaneous NH4 + and NO3 - removal using Fe cycling as a catalyst: Feammox coupled with NAFO[J]. Science of the Total Environment, 2018, 631/632: 153-157. |
54 | PANG Suyan, LI Ning, LUO Huan, et al. Autotrophic Fe-driven biological nitrogen removal technologies for sustainable wastewater treatment[J]. Frontiers in Microbiology, 2022, 13: 895409. |
55 | CHENG Lang, LIANG Hong, YANG Wenbo, et al. Zeolite enhanced iron-modified biocarrier drives Fe(Ⅱ)/Fe(Ⅲ) cycle to achieve nitrogen removal from eutrophic water[J]. Chemosphere, 2024, 346: 140547. |
56 | DAI Ruobin, CHEN Xiaoguang, MA Chengyu, et al. Insoluble/immobilized redox mediators for catalyzing anaerobic bio-reduction of contaminants[J]. Reviews in Environmental Science and Bio/Technology, 2016, 15(3): 379-409. |
57 | 方连峰, 王竞, 周集体, 等. 醌化合物强化偶氮染料的生物脱色[J]. 中国环境科学, 2007, 27(2): 174-178. |
FANG Lianfeng, WANG Jing, ZHOU Jiti, et al. Biological decolourzation quinone compound enhancing azo dyes[J]. China Environmental Science, 2007, 27(2): 174-178. | |
58 | VAN DER ZEE Frank P, CERVANTES Francisco J. Impact and application of electron shuttles on the redox (bio)transformation of contaminants: A review[J]. Biotechnology Advances, 2009, 27(3): 256-277. |
59 | ZHAO Juntao, LI Feng, CAO Yingxiu, et al. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms[J]. Biotechnology Advances, 2021, 53: 107682. |
60 | 毛彦俊. 亲电型与氧化还原介体型悬浮生物载体的制备及其在污水处理中的应用研究[D]. 大连: 大连理工大学, 2018. |
MAO Yanjun. Preparation of electrophilic and redox mediator suspended biofilm carriers and their application in wastewater treatment[D]. Dalian: Dalian University of Technology, 2018. | |
61 | WANG Lixue, LIU Tao, CHEN Shuo, et al. Enhancing the treatment of petrochemical wastewater using redox mediator suspended biofilm carriers[J]. Biochemical Engineering Journal, 2021, 173: 108087. |
62 | LU Hong, ZHOU Jiti, WANG Jing, et al. Enhanced biodecolorization of azo dyes by anthraquinone-2-sulfonate immobilized covalently in polyurethane foam[J]. Bioresource Technology, 2010, 101(18): 7196-7199. |
63 | YUAN Shouzhi, LU Hong, WANG Jing, et al. Enhanced bio-decolorization of azo dyes by quinone-functionalized ceramsites under saline conditions[J]. Process Biochemistry, 2012, 47(2): 312-318. |
64 | ZHANG Haikun, LU Hong, ZHANG Sheng, et al. A novel modification of poly(ethylene terephthalate) fiber using anthraquinone-2-sulfonate for accelerating azo dyes and nitroaromatics removal[J]. Separation and Purification Technology, 2014, 132: 323-329. |
65 | ZHOU Yang, LU Hong, WANG Jing, et al. Catalytic performance of quinone and graphene-modified polyurethane foam on the decolorization of azo dye Acid Red 18 by Shewanella sp. RQs-106[J]. Journal of Hazardous Materials, 2018, 356: 82-90. |
66 | 赵星程, 贾方旭, 蒋伟彧, 等. 氧化还原介体介导厌氧氨氧化生物脱氮的研究进展[J]. 化工进展, 2023, 42(3): 1606-1617. |
ZHAO Xingcheng, JIA Fangxu, JIANG Weiyu, et al. Redox mediators-mediated anaerobic ammonium oxidation process for biological nitrogen removal: A review[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1606-1617. | |
67 | XU Wenjie, LU Xinyue, TANG Xiaohui, et al. Mechanism of quinone mediators modified polyurethane foam for enhanced nitrobenzene reduction and denitrification[J]. Journal of Hazardous Materials, 2023, 459: 131830. |
68 | ROSEN Arthur D. Mechanism of action of moderate-intensity static magnetic fields on biological systems[J]. Cell Biochemistry and Biophysics, 2003, 39(2): 163-173. |
69 | C L M Bauréus KOCH, SOMMARIN M, PERSSON B R R, et al. Interaction between weak low frequency magnetic fields and cell membranes[J]. Bioelectromagnetics, 2003, 24(6): 395-402. |
70 | WANG Yilin, GU Xin, QUAN Jianing, et al. Application of magnetic fields to wastewater treatment and its mechanisms: A review[J]. Science of the Total Environment, 2021, 773: 145476. |
71 | 李卫平, 张明天, 张列宇, 等. 生物磁效应在环境污染治理与修复中的应用[J]. 环境工程技术学报, 2022, 12(5): 1420-1427. |
LI Weiping, ZHANG Mingtian, ZHANG Lieyu, et al. Application of biological magnetic effects in environment pollution control and restoration[J]. Journal of Environmental Engineering Technology, 2022, 12(5): 1420-1427. | |
72 | FAN Wenli, CHEN Yunfan, YUAN Bo, et al. Enhancing anammox nitrogen removal by static magnetic field exposure: Performance, microbial community and symbiotic relationship analysis[J]. Journal of Water Process Engineering, 2023, 53: 103709. |
73 | LIU Yi, LI Jixiang, GUO Wenshan, et al. Use of magnetic powder to effectively improve the performance of sequencing batch reactors (SBRs) in municipal wastewater treatment[J]. Bioresource Technology, 2018, 248: 135-139. |
74 | CHENG Yue, FAN Wenjing, GUO Lei. Coking wastewater treatment using a magnetic porous ceramsite carrier[J]. Separation and Purification Technology, 2014, 130: 167-172. |
75 | CHENG Yue, GUO Lei. Treatment of municipal landfill leachate using magnetic porous ceramsite carrier[J]. Journal of Water Reuse and Desalination, 2014, 4(2): 100-108. |
76 | TONG Qibang, WANG Guixin, CHEN Maolian, et al. Preparation and performance evaluation of novel magnetic porous carriers in fluidized bed bioreactor for wastewater treatment[J]. Biodegradation, 2021, 32(6): 677-695. |
77 | 王慧丽, 王化军, 盛艳玲. 磁铁矿树脂复合材料作为流化床载体的应用[J]. 矿产综合利用, 2006(3): 25-27. |
WANG Huili, WANG Huajun, SHENG Yanling. A study on fluidized bed using magnetite-resin composites as carrier[J]. Multipurpose Utilization of Mineral Resources, 2006(3): 25-27. | |
78 | WU Yifeng, LIU Xiangru, WANG Qi, et al. Fe3O4-fused magnetic air stone prepared from wasted iron slag enhances denitrification in a biofilm reactor by increasing electron transfer flow[J]. Frontiers in Chemistry, 2022, 10: 948453. |
79 | 敬双怡, 刘超, 蔡怡婷, 等. 低温下磁性载体强化MBBR硝化性能及微生物群落分析[J]. 化工进展, 2022, 41(4): 2180-2190. |
JING Shuangyi, LIU Chao, CAI Yiting, et al. Enhancement of nitrification performance of MBBR at low temperature by magnetic carrier and its microbial community analysis[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2180-2190. | |
80 | 林檬, 陈国, 赵珺. 磁辅助生物反应器研究进展[J]. 化工进展, 2014, 33(5): 1252-1258. |
LIN Meng, CHEN Guo, ZHAO Jun. Research progress of magnetically assisted bioreactor[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1252-1258. | |
81 | 刘超, 李奇, 宋子洋, 等. 低温下磁性载体 MBBR系统微生物群落特征和功能预测分析[J]. 环境科学, 2023, 44(2): 889-899. |
LIU Chao, LI Qi, SONG Ziyang, et al. Analysis of microbial community characteristics and function prediction of MBBR with magnetic biocarriers at low temperature[J]. Environmental Science, 2023, 44(2): 889-899. | |
82 | CHU Libing, WANG Jianlong, QUAN Feng, et al. Modification of polyurethane foam carriers and application in a moving bed biofilm reactor[J]. Process Biochemistry, 2014, 49(11): 1979-1982. |
83 | SHEN Yingjie, WU Guangxia, FAN Yaobo, et al. Performances of biological aerated filter employing hollow fiber membrane segments of surface-improved poly(sulfone) as biofilm carriers[J]. Journal of Environmental Sciences, 2007, 19(7): 811-817. |
84 | FARBER Ravit, Inbal DABUSH-BUSHERI, CHANIEL Gilad, et al. Biofilm grown on wood waste pretreated with cold low-pressure nitrogen plasma: Utilization for toluene remediation[J]. International Biodeterioration & Biodegradation, 2019, 139: 62-69. |
85 | 杨东方, 齐崴, 苏荣欣, 等. 填料表面亲水改性对MBBR处理船舶生活污水的影响[J]. 环境工程学报, 2014, 8(5): 1895-1898. |
YANG Dongfang, QI Wei, SU Rongxin, et al. Effect of carriers’ hydrophilicity on treatment of wastewater from ship by moving bed biofilm reactor[J]. Chinese Journal of Environmental Engineering, 2014, 8(5): 1895-1898. | |
86 | MAO Yanjun, QUAN Xie, ZHAO Huimin, et al. Accelerated startup of moving bed biofilm process with novel electrophilic suspended biofilm carriers[J]. Chemical Engineering Journal, 2017, 315: 364-372. |
87 | LIU Tao, JIA Guangyue, QUAN Xie. Accelerated start-up and microbial community structures of simultaneous nitrification and denitrification using novel suspended carriers[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(2): 577-584. |
88 | ZHANG Xiaoying, WEI Jing, ZHOU Xiangtong, et al. Evaluation of modified basalt fiber as biological carrier media for wastewater treatment with the extended DLVO theory model[J]. Environmental Science and Pollution Research International, 2019, 26(29): 29789-29798. |
89 | ZHANG Xiaoying, DING Jiazeng, GAO Fengyi, et al. Enhancement of nitrogen removal in hybrid wastewater treatment system using ferric citrate modified basalt fiber biocarrier[J]. Environmental Science and Pollution Research, 2021, 28(25): 33480-33490. |
90 | 杜振峰, 王芬, 成国栋, 等. 化学氧化-铁离子覆盖改性聚氨酯泡沫塑料填料的特性[J]. 化工进展, 2012, 31(7): 1575-1580. |
DU Zhenfeng, WANG Fen, CHENG Guodong, et al. Characteristics of polyurethane(PU) foam plastics bio-carrier modified by chemical oxidation-surface covering with iron ion[J]. Chemical Industry and Engineering Progress, 2012, 31(7): 1575-1580. |
[1] | 赵星程, 贾方旭, 蒋伟彧, 陈佳熠, 刘晨雨, 姚宏. 氧化还原介体介导厌氧氨氧化生物脱氮的研究进展[J]. 化工进展, 2023, 42(3): 1606-1617. |
[2] | 印霞棐, 李秀芬, 华兆哲, 任月萍, 王新华. 不同电极间距下自生电场膜生物反应器中的膜污染行为分析[J]. 化工进展, 2018, 37(11): 4485-4492. |
[3] | 刘国清, 李友凤, 曾令玮, 王占强, 谭谈, 曾坚贤. 超声化学辅助法制备纳米ZnS及其对水中铜离子的吸附性能[J]. 化工进展, 2017, 36(02): 750-755. |
[4] | 叶招莲. 微波无极准分子光/H2O2氧化降解含N-杂环化合物 [J]. 化工进展, 0, (): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |