1 |
CLEMENTS L L. High-performance fibers[J]. Composites Fabrication (USA), 2001, 17(7): 12-16.
|
2 |
赵浩. 芳纶树脂基复合材料的应用与发展[J].新材料产业, 2019 (1): 13-15.
|
|
ZHAO Hao. Application and development of aramid resin matrix composites[J]. Advanced Materials Industry, 2019(1): 13-15.
|
3 |
王维相, 翁亚栋. 芳纶在橡胶制品中的应用概况[J]. 橡胶工业, 2004, 51(7): 436-439.
|
|
WANG Weixiang, WENG Yadong. Application of aramid fiber in rubber products[J]. China Rubber Industry, 2004, 51(7): 436-439.
|
4 |
孙同生, 于存贵, 杨文超, 等. 玻纤/环氧树脂复合材料非线性粘弹性响应[J]. 哈尔滨工业大学学报, 2020, 52(7): 133-138.
|
|
SUN Tongsheng, YU Cungui, YANG Wenchao, et al. Nonlinear viscoelastic response of E-glass fiber /epoxy resin composites[J]. Journal of Harbin Institute of Technology, 2020, 52(7): 133-138.
|
5 |
KONOPASEK L, HEARLE J W S. The tensile fatigue behavior of para-oriented aramid fibers and their fracture morphology[J]. Journal of Applied Polymer Science, 1977, 21(10): 2791-2815.
|
6 |
NASSER J, GROO L, ZHANG L, et al. Laser induced graphene fibers for multifunctional aramid fiber reinforced composite[J]. Carbon, 2020, 158: 146-156.
|
7 |
费有静, 裴小兵.论芳纶纤维的应用与发展趋势[J]. 新材料产业,2019(4): 35-38.
|
|
FEI Youjing, FEI Xiaobin. Application and development trend of aramid fiber[J]. Advanced Materials Industry,2019(4): 35-38.
|
8 |
王芳, 秦其峰. 芳纶技术的发展及应用[J]. 合成技术及应用, 2013(1): 21-27.
|
|
WANG Fang, QING Qifeng. Development and application of aramid fiber technology[J]. Synthetic Technology & Application, 2013(1): 21-27.
|
9 |
ASADINEZHAD A, NOVÁK I, LEHOCKÝ M, et al. Polysaccharides coatings on medical-grade PVC: a probe into surface characteristics and the extent of bacterial adhesion[J]. Molecules, 2010, 15(2): 1007-1027.
|
10 |
LEE Y S, WETZEL E D, WAGNER N J. The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid[J]. Journal of Materials Science, 2003, 38(13): 2825-2833.
|
11 |
CHENG F, HU Y, YUAN B, et al. Transverse and longitudinal flexural properties of unidirectional carbon fiber composites interleaved with hierarchical Aramid pulp micro/nano-fibers[J]. Composites Part B: Engineering, 2020, 188: 107897.
|
12 |
JAMALI J, MAHMOODI M J, HASSANZADEH-Aghdam M K, et al. A mechanistic criterion for the mixed-mode fracture of unidirectional polymer matrix composites[J]. Composites Part B: Engineering, 2019, 176: 107316.
|
13 |
ZIRUI Huang, DONGSHENG Huang, Chui YING-HEI, et al. A bi-linear cohesive law-based model for Mode Ⅱ fracture analysis: application to ENF test for unidirectional fibrous composites[J]. Engineering Fracture Mechaincs, 2019, 213(15): 131-141.
|
14 |
DHANESH S, SENTHIL Kumar K, PRAVEEN Maruthur, et al. Experimental investigation of strength of Aramid Kevlar and chopped carbon reinforced concrete beam[J]. Materialstoday Proceedings, 2020, 45: 1269-1273.
|
15 |
FUZHI Song, QIHUA Wang, TINGMEI Wang. High mechanical and tribological performance of polyimide nanocomposites reinforced by chopped carbon fibers in adverse operating conditions[J]. Composites Science and Technology, 2016, 134: 251-257.
|
16 |
李梦洁, 董杰, 赵昕, 等. 纳米芳纶增强芳纶浆粕绝缘复合纸的制备及性能研究[J]. 绝缘材料, 2020, 53(9): 13-18.
|
|
LI Mengjie, DONG Jie, ZHAO Xin, et al. Preparation and properties of nano-aramid reinforced aramid pulp insulating composite paper[J]. Insulating Materials, 2020, 53(9): 13-18.
|
17 |
SU M, GU A, LIANG G, et al. The effect of oxygen-plasma treatment on Kevlar fibers and the properties of Kevlar fibers/bismaleimide composites[J]. Applied Surface Science, 2011, 257(8):3158-3167.
|
18 |
LIU T M,ZHENG Y S,HU J. Surface modification of aramid fibers with novel chemical approach[J]. Polymer Bulletin,2011, 66(2):259-275.
|
19 |
郑超, 吴琨, 李毅. 固化温度对环氧树脂碳带复合材料力学性能的影响[J]. 科技创新导报, 2019, 16(25): 91-93.
|
|
ZHENG Chao, WU Kun, LI Yi. Effect of curing temperature on mechanical properties of epoxy carbon ribbon composites[J]. Science and Technology Innovation Herald, 2019, 16(25): 91-93.
|
20 |
GONZÁLEZ C, VILATELA J J, MOLINA-ALDAREGUÍA J M, et al. Structural composites for multifunctional applications: current challenges and future trends[J]. Progress in Materials Science, 2017, 89: 194-251.
|
21 |
PANAR M, AVAKIAN P, BLUME R C, et al. Morphology of poly(p-phenyleneterephthalamide) fibers[J]. Journal of Polymer Science: Polymer Physics Edition, 1983, 21(10): 1955-1969.
|
22 |
GLOMM B H, GROB M C, NEUENSCHWANDER P, et al. Arrangement of substituted, rigid-rod aramids in the highly-ordered solid state[J]. Macromolecular Chemistry and Physics, 2000, 201(13): 1476-1486.
|
23 |
SHEN Z, XIA Z, ZHANG Y. Characterization and properties of epoxy resin (E-20) modified with silicone intermediate RSN-6018[J]. Progress in Organic Coatings, 2018, 114:115-122.
|
24 |
LI M, CHANG S, LI Y, et al. Effect factors on thermal and mechanical properties of SiO2 and TiB2 modified SiBCN-based adhesives[J]. Ceramics International, 2020, 46(11): 19416-19424.
|
25 |
LYU J, CHENG Z, WU H, et al. In-situ polymerization and covalent modification on aramid fiber surface via direct fluorination for interfacial enhancement[J]. Composites Part B: Engineering, 2020, 182: 107608.
|
26 |
ROHAM Rafiee, BEHZAD Mazhari. Modeling creep in polymeric composites: developing a general integrated procedure[J]. International Journal of Mechanical Sciences, 2015, 99: 112-120.
|
27 |
YOSHIHIKO Arao, OKUDOI Yukie, Koyanagi JUN, et al. Simple method for obtaining viscoelastic parameters of polymeric materials by incorporating physical-aging effects[J]. Mechanics of Time-Dependent Materials, 2012, 16(2): 169-180.
|