1 |
THOMAS B S, GUPTA R C. A comprehensive review on the applications of waste tire rubber in cement concrete[J]. Renewable & Sustainable Energy Reviews, 2016, 54: 1323-1333.
|
2 |
SIENKIEWICZ M, KUCINSKA-LIPKA J, JANIK H, et al. Progress in used tyres management in the European Union: a review[J]. Waste Management, 2012, 32(10): 1742-1751.
|
3 |
MARTÍNEZ J D, PUY N, MURILLO R, et al. Waste tyre pyrolysis—A review[J]. Renewable and Sustainable Energy Reviews, 2013, 23: 179-213
|
4 |
KANDASAMY J, GÖKALP I. Pyrolysis, combustion, and steam gasification of various types of scrap tires for energy recovery[J]. Energy & Fuels, 2015, 29(1): 346-354.
|
5 |
WILLIAMS P T W. Pyrolysis of waste tyres: a review[J]. Waste Management, 2013, 33(8): 1714-1728.
|
6 |
PRATHIBA R, SHRUTHI M, MIRANDA L R. Pyrolysis of polystyrene waste in the presence of activated carbon in conventional and microwave heating using modified thermocouple[J]. Waste Management, 2018, 76(6): 528-536.
|
7 |
KARATAS H, OLGUN H,AKGUN F,et al. Experimental results of gasification of waste tire with air in a bubbling fluidized bed gasifier[J]. Fuel Guildford, 2013, 105(3): 566-571.
|
8 |
VINCENT T, ANTHONY D G,TAHEREH H. Scrap tyre pyrolysis: modified chemical percolation devolatilization (M-CPD) to describe the influence of pyrolysis conditions on product yields[J]. Waste management, 2018: 76, 516-527.
|
9 |
MASTRAL A M, CALLÉN M S, GARCÍA T. Polycyclic aromatic hydrocarbons and organic matter associated to particulate matter emitted from atmospheric fluidized bed coal combustion[J]. Environmental Science & Technology, 1999, 33(18): 3177-3184.
|
10 |
AYLÓN E, FERNÁNDEZ-COLINO A, MURILLO R, et al. Valorisation of waste tyre by pyrolysis in a moving bed reactor[J]. Waste Management, 2010, 30(7): 1220-1224.
|
11 |
MALKOW T. Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal[J]. Waste Management, 2004, 24(1): 53-79.
|
12 |
MUI E L K, CHEUNG W H, MCKAY G. Tyre char preparation from waste tyre rubber for dye removal from effluents[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 151-158.
|
13 |
HIJAZI A, AL-MUHTASEB A H, AOUAD S, al et, Pyrolysis of waste rubber tires with palladium doped zeolite[J]. Journal of Environmental Chemical Engineering, 2019, 7(6): 103451.
|
14 |
GAUTHIER-MARADEI P, TAVERA RUIZ C P, CAPRON M. Oil and aromatic yield maximization during pyrolysis of scrap tire rubber[J]. Waste & Biomass Valorization, 2019, 10(12): 3723-3733.
|
15 |
SINGH R K, MONDAL S, RUJ B, et al. Interaction of three categories of tyre waste during co-pyrolysis: effect on product yield and quality[J]. Journal of Analytical and Applied Pyrolysis, 2019, 141: 104618
|
16 |
PU Y, LIU C, LI Q B, et al. Pyrolysis mechanism of HFO-1234yf with R32 by ReaxFF MD and DFT method[J]. International Journal of Refrigeration, 2020, 109: 82-91.
|
17 |
ZARAS A M, DAGAUT P, SERINYEL Z. Computational kinetic study for the unimolecular decomposition path ways of cyclohexanone[J]. The Journal of Physical Chemistry A, 2015, 119(28): 7138-7144.
|
18 |
霍二光, 刘朝, 李期斌, 等. 基于ReaxFF模拟的正戊烷热分解机理研究[J]. 工程热物理学报, 2020, 41(1): 61-67.
|
|
HUO Erguang, LIU Chao, LI Qibin, et al. Thermal decomposition mechanism of n-pentane by ReaxFF simulations[J]. Journal of Engineering Thermophysics, 2020, 41(1): 61-67
|
19 |
于清溪. 轮胎工业用橡胶材料现状与发展(三)[J]. 橡胶科技市场, 2008, 6(11): 1-5.
|
|
YU Qingxi. Present situation and development of rubber materials for tire industry(3)[J]. Rubber Science and Technology Market, 2008, 6(11): 1-5.
|
20 |
杨启容, 邹瀚森, 魏鑫, 等. 天然橡胶热解产物反应机理研究[J]. 西安交通大学学报, 2019, 53(1): 114-121.
|
|
YANG Qirong, ZOU Hansen, WEI Xin, et al. Study on the reaction Mechanism of natural rubber primary pyrolysis products[J]. Journal of Xi’an Jiaotong University, 2019, 53(1): 114-121.
|
21 |
钟浩文, 宫薛菲, 杨启容, 等. 丁苯橡胶气相热解产物反应机理的动力学计算与模型[J]. 热科学与技术, 2020, 19(2): 159-169.
|
|
ZHONG Haowen, GONG Xuefei, YANG Qirong, et al. Kinetic calculation and model about reaction mechanism of styrene-butadiene rubber pyrolysis gaseous products[J]. Journal of Thermal Science and Technology, 2020, 19(2): 159-169.
|
22 |
江德正, 刘朝, 魏顺安, 等. 纤维素热解过程的分子动力学模拟[J]. 工程热物理学报, 2009, 30(12): 1986-1990.
|
|
JIANG Dezheng,LIU Chao,WEI Shun’an, et al. Simulation of molecular dynamics incellulose pyrolysis[J]. Journal of Engineering Thermophysics, 2009, 30(12): 1986-1990
|
23 |
VAN D A, DASGUPTA S, LORANT F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409.
|
24 |
LIU Y L, DING J X, HAN K L. Molecular dynamics simulation of the high-temperature pyrolysis of methylcyclohexane[J]. Fuel, 2018, 217: 185-192.
|
25 |
HU S, SUN W, FU J, et al. Initiation mechanisms and kinetic analysis of the isothermal decomposition of poly(α-methylstyrene): a ReaxFF molecular dynamics study[J]. RSC Advances, 2018, 8(7): 3423-3432.
|
26 |
李震宇, 贺伟, 杨金龙. 密度泛函理论及其数值方法新进展[J]. 化学进展, 2005, 17(2): 192-202.
|
|
LI Zhenyu, HE Wei, YANG Jinlong. Recent progress in density functional theory and its numerical methods[J]. Progress in Chemistry, 2005, 17(2): 192-202.
|
27 |
傅献彩, 沈文霞, 姚天扬. 物理化学[M]. 4版. 北京: 高等教育出版社, 1990: 798-812.
|
|
FU Xiancai, SHEN Wenxia, YAO Tianyang. Physical chemistry[M]. 4th ed. Beijing: Higher Education Press, 1990: 798-812.
|
28 |
郝玉兰, 张红梅, 李金莲, 等. 1-丁烯热裂解自由基反应模型的建立及验证[J]. 化工科技, 2018, 26(1): 36-40, 56.
|
|
HAO Yulan, ZHANG Hongmei, LI Jinlian, et al.Establishment and verification of steam cracking radical reaction model of 1-butene[J]. Science & Technology in Chemical Industry, 2018, 26(1): 36-40, 56.
|
29 |
CZAJCZYŃSKA D, KRZYŻYŃSKA R, JOUHARA H, et al. Use of pyrolytic gas from waste tire as a fuel: a review[J]. Energy, 2017, 134: 1121-1131.
|
30 |
WEI X, ZHONG H W, YANG Q R, et al. Studying the mechanisms of natural rubber pyrolysis gas generation using RMD simulations and TG-FTIR experiments[J]. Energy Conversion & Management, 2019, 189: 43-152.
|
31 |
YANG Q R, YU S P, ZHONG H W, et al. Gas products generation mechanism during co-pyrolysis of styrene-butadiene rubber and natural rubber[J]. Journal of Hazardous Materials, 2020, 401: 123302.
|