化工进展 ›› 2021, Vol. 40 ›› Issue (6): 3132-3142.DOI: 10.16085/j.issn.1000-6613.2020-1416
王特1(), 蒋立2, 田晓录1, 方彬任1, 屈龙1, 李明涛1()
收稿日期:
2020-07-22
修回日期:
2020-11-12
出版日期:
2021-06-06
发布日期:
2021-06-22
通讯作者:
李明涛
作者简介:
王特(1995—),男,硕士研究生,研究方向为锂离子电池安全。E-mail:基金资助:
WANG Te1(), JIANG Li2, TIAN Xiaolu1, FANG Binren1, QU Long1, LI Mingtao1()
Received:
2020-07-22
Revised:
2020-11-12
Online:
2021-06-06
Published:
2021-06-22
Contact:
LI Mingtao
摘要:
锂离子电池因其清洁、充放电快、高能量密度等优点广泛应用于电动汽车。最近,电动汽车起火、爆炸事故引起人们对锂离子电池安全性的担忧。针对锂离子电池电解液易燃、易爆、易泄漏等安全问题,本文综述了电解液中加入阻燃剂磷酸酯、离子液体、氢氟醚的最新研究进展及其优缺点。电池如果在过充危险状况下会造成热积累,进而引发电池内部一系列危险副反应。本文还总结了氧化还原保护和电聚合保护两种措施来避免电池过度充电的研究进展。由于锂电池发生危险事故前内部会有一个热积累过程以及随着电池内部温度上升隔膜难以保持其力学性能,本文分别从热响应开关正极材料和安全隔膜两部分阐述了近年来锂离子电池内部热积累的应对策略,以期为最终解决锂离子电池的安全问题指明方向。
中图分类号:
王特, 蒋立, 田晓录, 方彬任, 屈龙, 李明涛. 锂离子电池安全材料的研究进展[J]. 化工进展, 2021, 40(6): 3132-3142.
WANG Te, JIANG Li, TIAN Xiaolu, FANG Binren, QU Long, LI Mingtao. Research progress of lithium ion batteries safety materials[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3132-3142.
1 | METZ B, DAVIDSON O, BOSCH P. Climate change 2007: mitigation, contribution of working group Ⅲ to the fourth assessment report of the intergovernmental panel on climate change[J]. Cambridge: Cambridge University Press, 2007. |
2 | WINTER M, BESENHARD J O, SPAHR M E, et al. Insertion electrode materials for rechargeable lithium batteries[J]. Adv. Mater., 1998, 10(10): 725-763. |
3 | XIANG H F, LIN H W, YIN B, et al. Effect of activation at elevated temperature on Li-ion batteries with flame-retarded electrolytes[J]. J. Power Sources, 2010, 195(1): 335-340. |
4 | 刘晋, 徐俊毅, 林月, 等. 全固态锂离子电池的研究及产业化前景[J]. 化学学报, 2013, 71(6): 869-878. |
LIU J, XU J Y, LIN Y, et al. All-solid-state lithium ion battery: research and industrial prospects[J]. Acta Chimica Sinica, 2013, 71(6): 869-878. | |
5 | ZENG Z, WU B, XIAO L, et al. Safer lithium ion batteries based on nonflammable electrolyte[J]. J. Power Sources, 2015, 279: 6-12. |
6 | CHEN L, ZHANG J. Designs of conductive polymer composites with exceptional reproducibility of positive temperature coefficient effect: a review[J]. Journal of Applied Polymer Science, 2020, DOI: 10.1002/app.49677. |
7 | YUAN M, LIU K. Rational design on separators and liquid electrolytes for safer lithium-ion batteries[J]. Energy Chemistry, 2020, 43: 58-70. |
8 | MO F, LI H, PEI Z, et al. A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes[J]. Sci. Bulletin, 2018, 63(16): 1077-1086. |
9 | ZHANG P, LI M, YANG B, et al. Polymerized ionic networks with high charge density: quasi-solid electrolytes in lithium-metal batteries[J]. Adv. Mater., 2015, 27(48): 8088-8094. |
10 | LIU X, ZHANG C, GAO S, et al. A novel polyphosphonate flame-retardant additive towards safety-reinforced all-solid-state polymer electrolyte[J]. Mater. Chem. Phys., 2020, 239: 122014. |
11 | WONG D H, THELEN J L, FU Y, et al. Nonflammable perfluoropolyether-based electrolytes for lithium batteries [J]. Proc. Natl. Acad. Sci. USA, 2014, 111(9): 3327-3331. |
12 | WANG G, FANG S, LUO D, et al. Functionalized 1,3-dialkylimidazolium bis(fluorosulfonyl)imide as neat ionic liquid electrolytes for lithium-ion batteries[J]. Electrochem. Commun., 2016, 72: 148-152. |
13 | 邱振平, 张英杰, 夏书标, 等. 无机全固态锂离子电池界面性能研究进展[J]. 化学学报, 2015, 73(10): 992-1001. |
QIU Z Z, ZHANG Y J, XIA S B, et al. Research progress on interface properties of inorganic solid state lithium ion batteries[J]. Acta Chimica Sinica, 2015, 73(10): 992-1001. | |
14 | BAGINSKA M, BLAISZIK B J, MERRIMAN R J, et al. Autonomic shutdown of lithium-ion batteries using thermoresponsive microspheres[J]. Adv. Energy Mater., 2012, 2(5): 583-590. |
15 | RAO Q, CHEN K, WANG C. Facile preparation of self-healing waterborne superhydrophobic coatings based on fluoroalkyl silane-loaded microcapsules[J]. RSC Adv., 2016, 10: 1039. |
16 | YU Z, ZHANG J, LIU T, et al. Research progress and perspectives of localized high-concentration electrolytes for secondary batteries[J]. Acta Chim. Sinica, 2020, 78(2): 114. |
17 | FENG J K, AI X P, CAO Y L, et al. Polytriphenylamine used as an electroactive separator material for overcharge protection of rechargeable lithium battery[J]. J. Power Sources, 2006, 161(1): 545-549. |
18 | 郑碧珠, 王红春, 马嘉林, 等. 固态电池无机固态电解质/电极界面的研究进展[J]. 中国科学(化学), 2017, 47(5): 579-593. |
ZHENG B Z, WANG H C, MA J L, et al. A review of inorganic solid electrolyte/electrode interface in all-solid-state lithium batteries[J]. Scientia Sinica Chimica, 2017, 47(5): 579-593. | |
19 | SHIM E G, NAM T H, KIM J G, et al. Electrochemical performance of lithium-ion batteries with triphenylphosphate as a flame-retardant additive[J]. J. Power Sources, 2007, 172(2): 919-924. |
20 | WANG J, YAMADA Y, SODEYAMA K, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nat. Energy, 2018, 3(1): 22-29. |
21 | CHEN S, ZHENG J, YU L, et al. High-efficiency lithium metal batteries with fire-retardant electrolytes[J]. Joule, 2018, 2(8): 1548-1558. |
22 | ZENG Z, JIANG X, LI R, et al. A safer sodium-ion battery based on nonflammable organic phosphate electrolyte[J]. Adv. Sci., 2016, 3(9): 1600066. |
23 | GRANZOW A. Flame retardation by phosphorus compounds[J]. Acc. Chem. Res.,1978, 11: 177-183. |
24 | FENG J K, SUN X J, AI X P, et al. Dimethyl methyl phosphate: a new nonflammable electrolyte solvent for lithium-ion batteries[J]. J. Power Sources, 2008, 184 (2): 570-573. |
25 | ZHU X, JIANG X, AI X, et al. Bis(2,2,2-trifluoroethyl) ethylphosphonate as novel high-efficient flame retardant additive for safer lithium-ion battery[J]. Electrochim. Acta, 2015, 165:67-71. |
26 | LIU K, LIU W, QIU Y, et al. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries[J]. Sci. Adv., 2017, 3(1): e1601978. |
27 | BALDUCCI A, JEONG S S, KIM G T, et al. Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project)[J]. J. Power Sources, 2011, 196(22): 9719-9730. |
28 | DAMEN L, LAZZARI M, MASTRAGOSTINO M. Safe lithium-ion battery with ionic liquid-based electrolyte for hybrid electric vehicles[J]. J. Power Sources, 2011, 196(20): 8692-8695. |
29 | EFTEKHARI A, LIU Y, CHEN P. Different roles of ionic liquids in lithium batteries[J]. J. Power Sources, 2016, 334: 221-239. |
30 | LEWANDOWSKI A, ŚWIDERSKA-MOCEK A. Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies[J]. J. Power Sources, 2009, 194(2): 601-609. |
31 | GUERFI A, DONTIGNY M, CHAREST P, et al. Improved electrolytes for Li-ion batteries: mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance[J]. J. Power Sources, 2010, 195(3): 845-852. |
32 | MARKEVICH E, SALITRA G, AURBACH D. Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries[J]. ACS Energy Letters, 2017, 2(6): 1337-1345. |
33 | SHEN S, FANG S, QU L, et al. Low-viscosity ether-functionalized pyrazolium ionic liquids based on dicyanamide anions: properties and application as electrolytes for lithium metal batteries[J]. RSC Adv., 2015, 5(114): 93888-93899. |
34 | MORITA M, KAWASAKI T, YOSHIMOTO N, et al. Nonflammable organic electrolyte solution based on perfluoro-ether solvent for lithium ion batteries[J]. Electrochem. Commun. 2003, 71: 1067-1069. |
35 | NAOI E I, OGIHARA N, NAKAMURA Y, et al. Nonflammable hydrofluoroether for lithium-ion batteries: enhanced rate capability, cyclability, and low-temperature performance[J]. J. Electrochem. Soc., 2009, 156: A272. |
36 | FANG S, WANG G, QU L, et al. A novel mixture of diethylene glycol diethylether and non-flammable methyl-nonafluorobutyl ether as a safe electrolyte for lithium ion batteries[J]. J. Mater. Chem., 2015, 3(42): 21159-21166. |
37 | JIANG L, WANG Q, LI K, et al. A self-cooling and flame-retardant electrolyte for safer lithium ion batteries[J]. Sustain. Energy Fuels, 2018, 2(6): 1323-1331. |
38 | 王伟,朱航辉. 锂离子电池固态电解质的研究进展[J]. 应用化工, 2017, 46(4): 760-764. |
WANG W, ZHU H H. Research progress of solid electrolytes for lithium-ion batteries[J]. Applied Chemical Industry, 2017, 46(4): 760-764. | |
39 | 唐致远,王占良. PEO基聚合物电解质[J]. 高分子材料科学与工程, 2003, 19(2): 48-51. |
TANG Z Y, WANG Z L. PEO-based polymer electrolyte[J]. Polymer Materials Science and Engineering, 2003, 19 (2): 48-51. | |
40 | KANNO R. Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system[J]. J. Electrochem. Soc., 2001, 148: A742. |
41 | INAGUMA Y, LIQUAN C, ITOH M, et al. High ionic conductivity in lithium lanthanum titanate [J]. Solid State Commun., 1993, 86(10): 689-693. |
42 | THANGADURAI V, NARAYANAN S, PINZARU D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review[J]. Chem. Soc. Rev., 2014, 45(34): 4714-4727. |
43 | ALPEN U V, RABENAU A, TALAT G H. Ionic conductivity in Li3N single crystals[J]. Applied Physics Letters, 1977, 30(12): 621-623. |
44 | 黄兴文, 廖松义, 刘荣涛, 等. 锂离子电池用PEO改性聚合物固态电解质的研究进展[J]. 功能材料, 2020, 51(9): 09018-09023. |
HUANG X W,LIAO S Y,LIU R T, et al. Progress of PEO modified polymer solid electrolytes for lithium ion batteries[J]. Journal of Function Materials, 2020, 51(9): 09018-09023. | |
45 | KUMAI K, MIYASHIRO H, KOBAYASHI Y. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell[J]. J. Power Sources, 1999, 82: 715-719. |
46 | METZGER M, STREHLE B, SOLCHENBACH S, et al. Origin of H2 evolution in LIBs: H2O reduction vs. electrolyte oxidation[J]. Journal of the Electrochemical Society, 2016, 163(5): A798-A809. |
47 | LI S L, AI X P, FENG J K, et al. Diphenylamine: a safety electrolyte additive for reversible overcharge protection of 3.6 V-class lithium ion batteries[J]. J. Power Sources, 2008, 184(2): 553-556. |
48 | ZHANG S S. A review on electrolyte additives for lithium-ion batteries[J]. J. Power Sources, 2006, 162(2): 1379-1394. |
49 | LIU K, LIU Y Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Sci. Adv., 2018, 4(6): 9820. |
50 | GOLOVIN, NEAL M. Application of metallocenes in rechargeable lithium batteries for overcharge protection[J]. J. Electrochem. Soc., 1992, 139(1): 5-9. |
51 | ABRAHAM K M, PASQUARIELLO D M, WILLSTAEDT E B. N-butylferrocene for overcharge protection of secondary lithium batteries[J]. J. Electrochem. Soc., 1990, 137(6): 1856-1857. |
52 | MAO H, SACKEN U VON. Aromatic monomer gassing agents for protecting non-aqueous lithium batteries against overcharge[P]. 2000-07-03 |
53 | XIAO L, AI X, CAO Y, et al. Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries[J]. Electrochim. Acta, 2004, 49(24): 4189-4196. |
54 | BAGINSKA M, BLAISZIK B J, RAJH T, et al. Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres[J]. J. Power Sources, 2014, 269: 735-739. |
55 | XIA L, ZHU L, ZHANG H, et al. A positive-temperature-coefficient electrode with thermal protection mechanism for rechargeable lithium batteries[J]. Chin. Sci. Bull., 2012, 57(32): 4205-4209. |
56 | HUANG Z X, SIM G J, TAN J C, et al. 3D-printed, carbon-nanotube-wrapped, thermoresponsive polymer spheres for safer lithium-ion batteries[J]. Energy Technol., 2018, 6(9): 1715-1722. |
57 | ZHONG H, KONG C, ZHAN H, et al. Safe positive temperature coefficient composite cathode for lithium ion battery[J]. J. Power Sources, 2012, 216: 273-280. |
58 | ZHANG S S. A review on the separators of liquid electrolyte Li-ion batteries[J]. J. Power Sources, 2007, 164: 351-364. |
59 | KO J M, MIN B G, KIM DW, et al. Thin-film type Li-ion battery, using a polyethylene separator grafted with glycidyl methacrylate[J]. Electrochim. Acta, 2004, 50: 367-370. |
60 | YANG S, GU J, YIN Y. A biaxial stretched β-isotactic polypropylene microporous membrane for lithium-ion batteries[J]. J. Appl. Polym. Sci., 2018, 135: 45825. |
61 | TSAO C H, HSIAO Y H, HSU C H. Stable lithium deposition generated from ceramic-cross-linked gel polymer electrolytes for lithium anode[J]. ACS Appl. Mater. Interfaces, 2016, 8: 15216-15224. |
62 | CHO T H, SAKAI T, TANASE S, et al. Electrochemical performances of polyacrylonitrile nanofiber-based nonwoven separator for lithium-ion battery, electrochem[J]. Solid State Lett., 2007, 10: A159. |
63 | SGEBREYESU M A,PURUSHOTHA Y,KUMAR J S. Preparation and characterization of lithium ion conducting polymer electrolytes based on a blend of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(methyl methacrylate)[J]. Heliyon, 2016, 2: e00134. |
64 | KUNDU M, COSTA C M, DIAS J, et al. On the relevance of the polar β-phase of poly(vinylidene fluoride) for high performancelithium-ion battery separators [J]. J. Phys. Chem. C, 2017, 121: 26216-26225. |
65 | YE L, SHI X, ZHANG Z, et al. An efficient route to polymeric electrolyte membranes with interparticle chain microstructure toward high-temperature lithium-ion batteries[J]. Adv. Mater. Interf., 2017, 4: 1601236. |
66 | COSTA C M, GOMEZ J L, et al. Poly(vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems[J]. J. Power Sources, 2014, 245: 779-786. |
67 | KANG S M, RYOU M H, CHOI J W, et al. Mussel- and diatom-inspired silica coating on separators yields improved power and safety in Li-ion batteries[J]. Chem. Mater., 2012, 24(17): 3481-3485. |
68 | ZHU X, JIANG X, AI X, et al. A highly thermostable ceramic-grafted microporous polyethylene separator for safer lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2015, 7 (43): 24119-24126. |
69 | CHOI J A, KIM S H, KIM D W. Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators[J]. J. Power Sources, 2010, 195(18): 6192-6196. |
70 | ZHANG Y, WANG Z, XIANG H, et al. A thin inorganic composite separator for lithium-ion batteries[J]. J. Membrane Sci., 2016, 509: 19-26. |
71 | LIAO H, ZHANG H, Q IN G, et al. Novel core-shell PS-co-PBA@SiO2 nanoparticles coated on pp separator as “thermal shutdown switch” for high safety lithium-ion batteries[J]. Macromol. Mater. Eng., 2017, 302(11): 1700241. |
72 | LIN D, ZHUO D, LIU Y, et al. All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator[J]. J. Am Chem Soc., 2016, 138(34): 11044-11050. |
73 | ZHANG J, YUE L, KONG Q, et al. Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery[J]. Sci.Rep., 2014, 4(1): 3935. |
74 | ORENDORFF C J, LAMBERT T N, CHAVEZ C A, et al. Polyester separators for lithium-ion cells: improving thermal stability and abuse tolerance[J]. Adv. Energy Mater., 2013, 3(3): 314-320. |
75 | LEE M J, HWANG J K, KIM J H, et al. Electrochemical performance of a thermally rearranged polybenzoxazole nanocomposite membrane as a separator for lithium-ion batteries at elevated temperature[J]. J. Power Sources, 2016, 305: 259-2686. |
76 | SHI C, ZHANG P, HUANG S, et al. Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries[J]. J. Power Sources, 2015, 298: 158-165. |
77 | ZHANG H, LIN C E, ZHOU M Y, et al. High thermal resistance polyimide separators prepared via soluble precusor and non-solvent induced phase separation process for lithium ion batteries[J]. Electrochim. Acta, 2016, 187: 125-133. |
78 | ZHANG H, ZHANG Y, XU T, et al. Poly(m-phenylene isophthalamide) separator for improving the heat resistance and power density of lithium-ion batteries[J]. J. Power Sources, 2016, 329: 8-16. |
79 | LI D, SHI D, FENG K, et al. Poly (ether ether ketone) (PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries[J]. J. Membr. Sci., 2017, 530: 125-131. |
80 | LI H, ZHANG B, LIU W, et al. Effects of an electrospun fluorinated poly(ether ether ketone) separator on the enhanced safety and electrochemical properties of lithium ion batteries[J]. Electrochim. Acta, 2018, 290: 150-164. |
81 | LI D, SHI D, XIA Y, et al. Superior thermally stable and nonflammable porous polybenzimidazole membrane with high wettability for high-power lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9: 8742-8750. |
82 | LI D, ZHANG H, LI X. Porous polyetherimide membranes with tunable morphology for lithium-ion battery[J]. J. Membr. Sci., 2018, 565: 42-49. |
83 | JIANG X, XIAO L, AI X, et al. A novel bifunctional thermo-sensitive poly(lactic acid)@poly(butylene succinate) core-shell fibrous separator prepared by a coaxial electrospinning route for safe lithium-ion batteries[J]. J. Mater. Chem. A, 2017, 5(44): 23238-23242. |
[1] | 熊琳强1,张英杰1,2,董 鹏1,杨瑞明1,夏书标1. 锂离子电池电解液防过充添加剂研究进展 [J]. 化工进展, 2011, 30(6): 1198-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |