1 | 李倩, 易红宏, 唐晓龙, 等. 低温等离子体协同催化处理VOCs的研究进展[J]. 环境与发展, 2019, 31(3): 102-103. | 1 | LI Q, YI H H, TANG X L, et al. Research progress of co-catalytic treatment of VOCs by low temperature plasma[J]. Environment and Development, 2019, 31(3): 102-103. | 2 | CHEN L W, MICHEL O, JONATHAN O, et al. Catalytic decomposition performance for O3 and NO2 in humid indoor air on a MnOx/Al2O3 catalyst modified by a cost-effective chemical grafting method[J]. Chinese Academy of Sciences, 2018, 12: 58-70. | 3 | 姚超坤. DBD协同光催化降解有机废气实验研究[D]. 西安: 西安理工大学, 2018. | 3 | YAO C K. Experimental study on degradation of VOCs by DBD synergistic photocatalysts[D]. Xi’an: Xi’an University of Technology, 2018. | 4 | XU T Z, ZHENG H, ZHANG P Y. Performance of an innovative VUV-PCO purifier with nanoporous TiO2 film for simultaneous elimination of VOCs and by-product ozone in indoor air[J]. Building and Environment,2018, 142: 379-387. | 5 | YE Z P, JEAN-MARC G, NATHALIE D G, et al. The design of MnOx based catalyst in post-plasma catalysis configuration for toluene abatement[J]. Catalysts, 2018, 8(2): 91. | 6 | CHEN B, WANG B, SUN Y, et al. Plasma-assisted surface interactions of Pt/CeO2 catalyst for enhanced toluene catalytic oxidation[J]. Catalysts, 2019, 9: 2. | 7 | PAN Kuan Lun, CHANG Moo Been. Plasma catalytic oxidation of toluene over double perovskite-type oxide via packed-bed DBD[J]. Environmental Science and Pollution Research, 2019. 26: 12948-12962. | 8 | YOUN Ji Su, Jongyoon BAE, PARK Sunyoung, et al. Plasma-assisted oxidation of toluene over Fe/zeolite catalyst in DBD reactor using adsorption/desorption system[J]. Catalysis Communications, 2018, 113: 36-40. | 9 | THIEN Pham Huu, SONIA Gil, PATRICK Da Costa, et al. Plasma-catalytic hybrid reactor: application to methane removal[J]. Catalysis Today, 2015, 257: 86-92. | 10 | 赵琼. 低温等离子体降解VOCs的DBD反应器优化探索和产物分析[D]. 上海: 东华大学, 2017. | 10 | ZHAO Q. Study of the VOCs degradation by optimization of DBD plasma reactor[D]. Shanghai: Donghua University, 2017. | 11 | 张晴, 李茹, 桑田, 等. 介质阻挡放电等离子体协同催化处理甲苯废气[J]. 西安工程大学学报, 2018, 32(5): 46-52. | 11 | ZHANG Q, LI R, SANG T, et al. Decomposition of toluene waste gas by dielectric barrier discharge plasma coupled with catalyst[J]. Journal of Xi′an Polytechnic University, 2018, 32(5): 46-52. | 12 | 冯发达. 反电晕等离子体发生方法及协同催化处理挥发性有机物的研究[D]. 杭州: 浙江大学, 2014. | 12 | FENG F D. Plasma generation based on back corona discharge and its catalysis application for volatile organic compounds removal[D]. Hangzhou: Zhejiang University, 2014. | 13 | YAO X H, ZHANG Jian, LIANG Xiaoyang, et al. Niobium doping enhanced catalytic performance of Mn/MCM-41 for toluene degradation in the NTP-catalysis system[J]. Chemosphere,2019,230: 479-487. | 14 | YE H L, LIU Y Q, CHEN S, et al. Synergetic effect between non-thermal plasma and photocatalytic oxidation on the degradation of gas-phase toluene: role of ozone[J]. Chinese Journal of Catalysis,2019,40(5): 681-690. | 15 | 梁文俊, 武红梅, 任思达, 等. 流向变换-等离子体-催化反应系统降解甲苯[J]. 工业催化, 2018, 26(12): 79-82. | 15 | LIANG W J, WU H M, REN S D, et al. Decomposition oftoluene in reverse-flow plasma catalytic system[J]. Industrial Catalysis, 2018, 26(12): 79-82. | 16 | 任思达, 梁文俊, 王昭艺, 等. Ce掺杂对Pd/γ-Al2O3催化燃烧甲苯性能的影响[J]. 中国环境科学, 2019, 39(7): 2774-2780. | 16 | REN S D, LIANG W J, WANG Z Y, et al. Effect of Ce doping on the performance of Pd/γ-Al2O3 catalytic combustion of toluene[J]. China Environmental Science, 2019, 39(7): 2774-2780. | 17 | 武红梅. 流向变换-等离子体反应系统降解甲苯研究[D]. 北京: 北京工业大学, 2018. | 17 | WU H M. Degradation of toluene by flow reversal plasma reaction system[D]. Beijing: Beijing University of Technology, 2018. | 18 | 鲁美娟, 杨文亭, 喻成龙, 等. 等离子体协同催化降解VOCs过程中O3的作用机理[J]. 化工进展, 2018, 37(7): 2649-2654. | 18 | LU M J, YANG W T, YU C L, et al. Role of O3 during the plasma-catalytic oxidation of VOCs[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2649-2654. | 19 | 张亚庆. 介质阻挡放电臭氧发生的传热模拟和产生机理初探[D]. 南昌: 南昌大学, 2015. | 19 | ZHANG Y Q. Heat transfer simulation and initial exploration of the mechanism of ozone generation via dielectric barrier discharge[D]. Nanchang: Nanchang University,2015. | 20 | KIM H H, OGATA A, FUTAMURA S. Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis[J]. IEEE Transactions on Plasma Science, 2006, 34(3): 984-995. | 21 | TAKAKI K, URASHIMA K, CHANG J S. Ferro-electric pellet shape effect on C2F6 removal by a packed-bed-type nonthermal plasma reactor[J]. IEEE Transactions on Plasma Science, 2004, 32(6): 2175-2183. | 22 | ABOU SAOUD W, ASSADI A A, GUIZA M, et al. Study of synergetic effect, catalytic poisoning and regeneration using dielectric barrier discharge and photocatalysis in a continuous reactor: abatement of pollutants in air mixture system[J]. Applied Catalysis B, 2017,213: 53-61. | 23 | WANG M X, ZHANG P Y, LI J G, et al. The effects of Mn loading on the structure and ozone decomposition activity of MnOx supported on activated carbon[J]. Chinese Journal of Catalysis, 2014, 35(3): 335-341. | 24 | MACIUCA A, BATIOT DUPEYRAT C, TATIBOU T J M, et al. Synergetic effect by coupling photocatalysis with plasma for low VOCs concentration removal from air[J]. Applied Catalysis B: Environmental, 2012, 125: 432-438. | 25 | áLVAREZ P M, MASA J F, JARAMILLO J, et al. Kinetics of ozone decomposition by granular activated carbon[J]. Industrial & Engineering Chemistry Research, 2008, 47(8): 2545-2553. | 26 | WANG T, CHEN S, WANG H Q, et al. In-plasma catalytic degradation of toluene over different MnO2 polymorphs and study of reaction mechanism[J]. Chinese Journal of Catalysis, 2017,38(5): 793-803. | 27 | EINAGA H, HARADA M, FUTAMURA S. Structural changes in alumina-supported manganese oxides during ozone decomposition[J]. Chemical Physics Letters, 2005, 408(4/5/6): 377-380. | 28 | REZAEI E, SOLTAN J, CHEN N. Catalytic oxidation of toluene by ozone over alumina supported manganese oxides: effect of catalyst loading[J]. Applied Catalysis B: Environmental, 2013, 136(3): 239-247. | 29 | 梁文俊, 孙慧频, 朱玉雪, 等. 流向变换等离子体催化系统去除甲苯[J]. 中国环境科学, 2019, 39(12): 4974-4981. | 29 | LANG W J, SUN H P, ZHU Y X, et al. Removal of toluene with a reverse flow non-thermal plasma-catalytic reaction system[J]. China Environmental Science, 2019, 39(12): 4974-4981. | 30 | LI X S, GUO T, PENG Z, et al. Real-time monitoring and quantification of organic by-products and mechanism study of acetone decomposition in a dielectric barrier discharge reactor[J]. Environmental Science and Pollution Research International, 2019, 26: 6773-6781. | 31 | MALIK M A, MINAMITANI Y, SCHOENBACH K H. Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in a plasmacatalytic reactor[J]. IEEE Transactions on Plasma Science, 2005, 33(1): 50-56. | 32 | HUANG H B, YE D Q, LEUNG D Y C, et al. Byproducts and pathways of toluene destruction via plasma-catalysis[J]. Journal of Molecular Catalysis A: Chemical, 2011, 336(1/2): 87-93. | 33 | GUO Y F, YE D Q, CHEN K F, et al. Toluene removal by a DBD-type plasma combined with metal oxides catalysts supported by nickel foam[J]. Catalysis Today, 2007, 126(3/4): 328-337. | 34 | 梁文俊, 李玉泽, 郑川, 等. 用于低浓度一氧化碳去除的流向变换系统[J]. 北京工业大学学报, 2016, 42(9): 1428-1434. | 34 | LIANG W J, LI Y Z, ZHENG C, et al. Reverse-flow reactor in removal of lean carbon monoxide[J]. Journal of Beijing University of Technology, 2016, 42(9): 1428-1434. | 35 | 梁文俊, 武红梅, 李坚, 等. 流向变换-低温等离子体反应系统用于VOCs 去除及热量分布研究[J]. 环境工程技术学报, 2018, 8(4): 373-380. | 35 | LIANG W J, WU H M, LI J, et al. Removal of VOCs and heat distribution in a flow reversal plasma reaction system[J]. Journal of Environmental Engineering Technology, 2018, 8(4): 373-380. |
|