化工进展 ›› 2019, Vol. 38 ›› Issue (06): 2922-2932.DOI: 10.16085/j.issn.1000-6613.2018-2149
收稿日期:
2018-11-02
出版日期:
2019-06-05
发布日期:
2019-06-05
通讯作者:
高弯弯
作者简介:
郭睿(1959—),男,教授,研究方向为表面活性剂。
基金资助:
Rui GUO,Wanwan GAO(),Xueyan LIU,Wensheng HUO,Wenpei FENG,Xiuhuan LI
Received:
2018-11-02
Online:
2019-06-05
Published:
2019-06-05
Contact:
Wanwan GAO
摘要:
以氯铂酸为催化剂,异丙醇为溶剂,以自制的丙烯酸壬基酚聚氧乙烯聚氧丙烯酯(NPEAA)与烯丙基聚氧乙烯聚氧丙烯环氧基封端聚醚(AEPH)为原料,共同改性苯基含氢硅油合成了聚硅氧烷稠油破乳剂(NAEPHS),以Si—H转化率和表面张力为衡量指标,探讨不同因素对NAEPHS的影响规律,确定最佳合成条件:温度110℃,n(Si—H)∶n(C—C)为1∶1.10,反应时间5.5h,催化剂用量30μg/g时,NAEPHS的Si—H键的转化率为94.06%、表面张力为26.46mN/m。并用红外光谱、核磁氢谱作结构表征。采用吊片法和荧光光谱仪测得其临界胶束质量浓度CMC为0.6g/L,最低表面张力为26.48mN/m。将其应用于陈庄稠油模拟乳状液破乳,在NAEPHS浓度0.6g/L,破乳温度45℃,破乳时间1.5h的条件下,脱水率为89.7%,脱出水中含油量为189.7mg/L。根据Turbiscan Lab稳定性分析仪谱图和TSI测试结果得出,破乳效果明显优于其他3种市售破乳剂。通过对体系黏度、油水界面张力和破乳过程综合推测,NAEPHS分子的破乳机理为顶替或置换机理。
中图分类号:
郭睿, 高弯弯, 刘雪艳, 霍文生, 冯文佩, 李秀环. NPEAA与AEPH共改性苯基含氢硅油的制备及其破乳性能[J]. 化工进展, 2019, 38(06): 2922-2932.
Rui GUO, Wanwan GAO, Xueyan LIU, Wensheng HUO, Wenpei FENG, Xiuhuan LI. Preparation and demulsification properties of phenyl hydrosilicon oil modified by NPEAA and AEPHS[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2922-2932.
破乳浓度 /g?L-1 | 脱水率/% | 脱出水含油量 /mg?L-1 | 界面状况 | 脱出水质 清洁度 |
---|---|---|---|---|
0.3 | 46.7 | 409.2 | 较整齐 | 浑浊 |
0.4 | 57.8 | 371.8 | 整齐 | 较浑浊 |
0.5 | 75.4 | 314.5 | 整齐 | 较清 |
0.6 | 87.3 | 195.8 | 整齐 | 清 |
0.7 | 87.2 | 201.6 | 整齐 | 清 |
0.8 | 87.0 | 206.7 | 整齐 | 清 |
表1 破乳浓度对NAEPHS破乳性能的影响
破乳浓度 /g?L-1 | 脱水率/% | 脱出水含油量 /mg?L-1 | 界面状况 | 脱出水质 清洁度 |
---|---|---|---|---|
0.3 | 46.7 | 409.2 | 较整齐 | 浑浊 |
0.4 | 57.8 | 371.8 | 整齐 | 较浑浊 |
0.5 | 75.4 | 314.5 | 整齐 | 较清 |
0.6 | 87.3 | 195.8 | 整齐 | 清 |
0.7 | 87.2 | 201.6 | 整齐 | 清 |
0.8 | 87.0 | 206.7 | 整齐 | 清 |
破乳时间/h | 脱水率/% | 脱出水含油量 /mg?L-1 | 界面状况 | 脱出水质 清洁度 |
---|---|---|---|---|
0.5 | 40.0 | 470.65 | 较整齐 | 浑浊 |
1.0 | 70.3 | 325.74 | 较整齐 | 较清 |
1.5 | 89.3 | 191.50 | 整齐 | 清 |
2.0 | 89.3 | 191.50 | 整齐 | 清 |
2.5 | 89.3 | 191.50 | 整齐 | 清 |
3.0 | 89.3 | 191.50 | 整齐 | 清 |
表2 破乳时间对NAEPHS破乳性能的影响
破乳时间/h | 脱水率/% | 脱出水含油量 /mg?L-1 | 界面状况 | 脱出水质 清洁度 |
---|---|---|---|---|
0.5 | 40.0 | 470.65 | 较整齐 | 浑浊 |
1.0 | 70.3 | 325.74 | 较整齐 | 较清 |
1.5 | 89.3 | 191.50 | 整齐 | 清 |
2.0 | 89.3 | 191.50 | 整齐 | 清 |
2.5 | 89.3 | 191.50 | 整齐 | 清 |
3.0 | 89.3 | 191.50 | 整齐 | 清 |
破乳温度/℃ | 脱水率/% | 脱出水含油量 /mg?L-1 | 界面状况 | 脱出水质 清洁度 |
---|---|---|---|---|
20 | 21.9 | 587.5 | 不整齐 | 浑浊 |
30 | 57.4 | 373.0 | 较整齐 | 较浑浊 |
40 | 91.1 | 184.5 | 整齐 | 较清 |
45 | 89.7 | 189.7 | 整齐 | 清 |
50 | 87.2 | 194.3 | 较整齐 | 清 |
60 | 86.6 | 218.5 | 较整齐 | 清 |
表3 破乳温度对NAEPHS破乳性能的影响
破乳温度/℃ | 脱水率/% | 脱出水含油量 /mg?L-1 | 界面状况 | 脱出水质 清洁度 |
---|---|---|---|---|
20 | 21.9 | 587.5 | 不整齐 | 浑浊 |
30 | 57.4 | 373.0 | 较整齐 | 较浑浊 |
40 | 91.1 | 184.5 | 整齐 | 较清 |
45 | 89.7 | 189.7 | 整齐 | 清 |
50 | 87.2 | 194.3 | 较整齐 | 清 |
60 | 86.6 | 218.5 | 较整齐 | 清 |
1 | 孟浩, 张明, 陈家庆, 等 .非均匀高频电场下W/O型乳化液动态破乳聚结特性的实验研究[J]. 高校化学工程学报, 2018, 32(2): 347-357. |
MENG H , ZHANG M , CHEN J Q , et al . Experimental study on dynamic demulsification and coalescence of W /O emulsion under inhomogeneous high frequency electric field[J]. College Journal of Chemical Engineering, 2018, 32 (2): 347-357. | |
2 | LI Z W , GENG H K , WANG X J , et al . Noval tannic acid-based polyether as an effective demulsifier for water-in aging crude oil emulsions[J]. Chemical Engineering Journal, 2018, 354: 1110-1119. |
3 | 郭继香, 杨矞琦, 张江伟, 等 . 超稠油复合降黏剂SDG-3的研究和应用[J].精细化工, 2017, 34(3): 341-348. |
GUO J X , YANG Y Q , ZHANG J W , et al . Research and application of super heavy oil composite viscosity reducer SDG-3[J].Fine Chemicals,2017, 34(3): 341-348. | |
4 | 朱晓斌, 洪锦祥, 李炜 . 破乳行为对CA浆体流变性能的影响及机理[J]. 建筑材料学报, 2017, 20(4): 548-555. |
ZHU X B , HONG J X , LI W . Influence and mechanism of demulsification behavior on rheological properties of CA slurry[J].Journal of Building Materials, 2017, 20(4): 548-555. | |
5 | 李美蓉, 丁俐, 刘娜, 等 .稠油降黏剂与树形大分子破乳剂的界面相互作用[J]. 石油学报(石油加工), 2015, 31(6): 1325-1331. |
LI M R , DING L , LIU N , et al . Interfacial interaction between heavy oil viscosity reducer and dendrimers[J]. Journal of Petroleum (Petroleum Processing), 2015,31(6): 1325-1331. | |
6 | 张丽, 马贵阳, 潘振, 等 . 基于SAGD稠油开采余热利用的冷热电三联供系统[J]. 工程热物理学报, 2018, 39(9): 1890-1898. |
ZHANG L , MA G Y, PAN Z , et al . A combined cold, heat and electric power supply system based on SAGD heavy oil recovery waste heat utilization[J]. Journal of Engineering Thermophysics, 2018,39(9): 1890-1898. | |
7 | 雷群, 翁定为, 罗健辉, 等 . 中国石油油气开采工程技术进展与发展方向[J]. 石油勘探与开发, 2019(1): 1-7. |
LEI Q , WENG D W , LUO J H , et al . Technical progress and development direction of petroleum production engineering in China [J]. Petroleum Exploration and Development, 2019(1): 1-7. | |
8 | ZHANG Y , XUE D D , LI Y F , et al . Synthesis of fluorinated silicon-containing amphiphilic copolymer and its demulsification performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558: 479-487. |
9 | XU H , JIA W , REN S , et al . Novel and recyclable demulsifier of expanded perlite grafted by magnetic nanoparticles for oil separation from emulsified oil wastewaters[J]. Chemical Engineering Journal, 2018, 337: 10-18. |
10 | 郑淑华, 郭睿, 乔宇,等 . 新型聚硅氧烷原油破乳剂的合成与表征[J]. 石油化工, 2013, 42(9): 1009-1013. |
ZHENG S H , GUO R , QIAO Y , et al . Synthesis and characterization of a novel demulsifier for polysiloxane crude oil[J]. Petrochemical, 2013, 42(9): 1009-1013. | |
11 | 蔡奇峰, 周继柱, 付增华,等 . 聚醚型原油破乳剂结构与破乳性能关系的研究[J]. 应用化工, 2013, 42(1): 68-71. |
CAI Q F , ZHOU J Z , FU Z H , et al . Study on the relationship between demulsifier structure and demulsification performance of polyether crude oil[J]. Applied Chemical Industry, 2013, 42(1): 68-71. | |
12 | 王二蒙 . 聚硅氧烷稠油破乳剂的合成与性能评价[D]. 西安: 陕西科技大学, 2015. |
WANG E M . Synthesis and performance evaluation of polysiloxane heavy oil demulsifier[D].Xi’an: Shaanxi University of Science and Technology, 2015. | |
13 | 杨江月 . 长链烷基与聚醚共改性苯基含氢硅油的制备与应用研究[D].西安: 陕西科技大学, 2017. |
YANG J Y . Preparation and application of long chain alkyl and polyether co-modified phenyl hydrosilicon oil[D]. Xi’an :Shaanxi University of Science and Technology, 2017. | |
14 | 陈诚 . 梳型聚硅氧烷原油破乳剂的合成与应用[D]. 西安: 陕西科技大学, 2012. |
CHEN C . Synthesis and application of comb polysiloxane demulsifier for crude oil[D]. Xi’an: Shaanxi University of Science and Technology, 2012. | |
15 | 翟雪如, 刘腾, 徐桂英, 等 . 支状嵌段聚醚的界面聚集行为及对原油乳状液的破乳作用[J]. 物理化学学报, 2013, 29(6): 1253-1259. |
ZHAI X R , LIU T , XU G Y , et al . The interfacial aggregation behavior of branched block polyether and its demulsifying effect on crude oil emulsion[J]. Journal of Physicochemistry, 2013, 29(6): 1253-1259. | |
16 | YANG Y , FENG J , CAO X L , et al . Effect of demulsifier structures on the interfacial dilational properties of oil-water films[J]. Journal of Dispersion Science and Technology, 2016, 37(7): 9. |
17 | FENG S , CUI M . Study of polysiloxanes containing epoxy groups: I. Synthesis and characterization of polysiloxanes containing 3-(2,3-epoxypropoxy)propyl groups[J]. Reactive and Functional Polymers, 2000, 45(2): 79-83. |
18 | AHMAD S , GUPTA A P , SHARMIN E , et al . Synthesis, characterization and development of high performance siloxane-modified epoxy paints[J]. Progress in Organic Coatings, 2005, 54(3): 248-255. |
19 | 王小静, 周立辉, 许人军, 等 . 改性聚硅氧烷稠油破乳剂的合成及其性能[J].精细化工, 2017, 34(11): 1301-1307. |
WANG X J , ZHOU L H , XU R J , et al . Synthesis and properties of modified polysiloxane demulsifier for heavy oil[J]. Fine Chemical Industry, 2017, 34(11): 1301-1307. | |
20 | 郭睿, 杨江月, 程敏, 等 .聚醚改性苯基含氢硅油非离子表面活性剂的合成及性能[J]. 石油化工, 2016, 45(10): 1222-1228. |
GUO R , YANG J Y , CHENG M , et al . Synthesis and properties of polyether modified nonionic surfactants for phenyl hydrosilicon oil[J]. Petrochemical, 2016, 45(10): 1222-1228. | |
21 | 国家石油和化学工业局 . SY/T 5281—2000原油破乳剂使用性能检测方法(瓶试法)[S]. 北京: 石油工业出版社, 2000. |
China Petroleum and Chemical Industry Federation . SY/T 5281—2000 crude oil demulsifier performance test method (bottle test)[S]. Beijing: Petroleum Industry Press, 2000. | |
22 | 国家能源局 . SY/T 5329—2012碎屑岩油藏注水水质推荐指标及分析方法[S]. 北京: 石油工业出版社, 2012. |
Nation Energy Administration .SY/T 5329—2012 Recommended index and analysis method for water injection water quality in clastic reservoir of clastic rock reservoir[S]. Beijing: Petroleum Industry Press, 2012. | |
23 | 李仲伟 . 聚合物驱原油破乳剂的研究及应用[D].济南: 山东大学,2017. |
LI Z W . Study and application of polymer flooding demulsifier for crude oil[D]. Jinan: Shandong University, 2017. | |
24 | LI Z W , YIN S , TAN G R , et al . Synthesis and properties of novel branched polyether as demulsifiers for polymer flooding[J]. Colloid and Polymer Science, 2016, 294(12): 1943-1958. |
25 | WANG J , HU F L , LI C Q , et al . Synthesis of dendritic polyether surfactants for demulsification[J]. Separation and Purification Technology, 2010, 73(3): 349-354. |
26 | 赵晓非, 葛丹, 张晓阳 . 超声波-破乳联用技术处理大庆落地油泥[J].化工进展, 2017, 36(s1): 489-494. |
ZHAO X F , GE D , ZHANG X Y . Ultrasonic and demulsification combined treatment of Daqing ground oil sludge[J]. Chemical Industry and Engineering Progress, 2017, 36(s1): 489-494. | |
27 | GONG H , XU L , ZHU T , et al . Interactions between pluronic block polyether and CTAB at air/water interface: interfacial dilational rheology study[J]. Colloid & Polymer Science, 2016, 294(10): 1-8. |
28 | SUN G , ZHANG J , LI H . Structural behaviors of waxy crude oil emulsion gels[J]. Energy & Fuels, 2014, 28(6): 3718-3729. |
29 | ZHANG L F , HAO Y , SHU Y , et al . Hyperbranched poly(amido amine) demulsifiers with ethylenediamine/1,3-propanediamine as an initiator for oil-in-water emulsions with microdroplets[J]. Fuel, 2018, 226: 381-388. |
30 | LIU B , LUO J W , WANG X , et al . Alginate/quaternized carboxymethyl chitosan/clay nanocomposite microspheres: preparation and drug-controlled release behavior[J]. Journal of Biomaterials Science, 2013, 24(5): 589-605. |
31 | ATTA A M , ABDULLAH M M S , AL-LOHEDAN H A , et al . Demulsification of heavy crude oil using new nonionic cardanol surfactantss[J]. Journal of Molecular Liquids, 2018, 252: 311-320. |
32 | HAO L , JIANG B , ZHANG L H , et al . Efficient demulsification of diesel-in-water emulsions by different structural dendrimer-based demulsifiers[J]. Industrial & Engineering Chemistry Research, 2016, 55(6): 1748-1759. |
[1] | 柯其宁,代志鹏,陈琛,陈绪煌. 铂催化硅氢加成反应研究进展[J]. 化工进展, 2020, 39(3): 992-999. |
[2] | 冷帅, 李云涛, 邓建国. 三核铜配合物的合成、表征及其催化性能[J]. 化工进展, 2018, 37(10): 3879-3884. |
[3] | 陈杰. 聚异丁烯硅氧烷的合成及性能[J]. 化工进展, 2014, 33(02): 459-462. |
[4] | 邓锋杰,徐少华,温远庆,李卫凡,李凤仪. 4A分子筛固载铂催化剂催化乙炔硅氢加成反应 [J]. 化工进展, 2008, 27(1): 112-. |
[5] | 班文彬,刘伟区,申德妍,侯孟华. 硅氢加成法制备含长链烷基两亲性聚合物 [J]. 化工进展, 2006, 25(2): 176-. |
[6] | 戴延凤,李 磊,李凤仪. 改性阳离子树脂配合铂催化苯乙烯硅氢加成反应 [J]. 化工进展, 2006, 25(1): 74-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 242
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 399
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |