化工进展 ›› 2018, Vol. 37 ›› Issue (05): 1923-1932.DOI: 10.16085/j.issn.1000-6613.2017-1413

• 生物与医药化工 • 上一篇    下一篇

近红外光谱技术应用于中草药口服液在线质量控制的化学计量学建模

李晶晶1, 周昭露1, 黄生权2, 鲁亮2, 黄延盛2, 田淑华3, FALOLA Akinola A3, 李璇3, 李杰1, 舒逸聃1, 王学重1   

  1. 1 华南理工大学化学与化工学院, 广东 广州 510640;
    2 无限极(中国)有限公司, 广东 广州 510623;
    3 晶格码(青岛)智能科技有限公司, 山东 青岛 266109
  • 收稿日期:2017-07-10 修回日期:2017-11-20 出版日期:2018-05-05 发布日期:2018-05-05
  • 通讯作者: 王学重,教授,博士生导师,研究方向为制药工程和过程控制;黄生权,教授级高级工程师,研究方向为食品工程和制药过程控制。
  • 作者简介:李晶晶(1992-),女,硕士研究生,从事近红外建模技术研究。E-mail:l.jingjing03@mail.scut.edu.cn。

Development of chemometric models based on near infrared spectroscopy for on-line quality control of a Chinese herbal liquid tonic

LI Jingjing1, ZHOU Zhaolu1, HUANG Shengquan2, LU Liang2, HUANG Yansheng2, TIAN Shuhua3, FALOLA Akinola A3, LI Xuan3, LI Jie1, SHU Yidan1, WANG Xuezhong1   

  1. 1 School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China;
    2 Infinitus(China), Guangzhou 510623, Guangdong, China;
    3 Pharmavision(Qingdao) Intelligent Technology Ltd., Qingdao 266109, Shandong, China
  • Received:2017-07-10 Revised:2017-11-20 Online:2018-05-05 Published:2018-05-05

摘要: 以一种中草药口服液中多糖含量、可溶性固形物含量及pH为对象,利用近红外光谱技术对其进行实时在线检测,重点研究了化学计量学建模方法。建模过程采用了一种系统工程的方法,综合考虑了光谱预处理、特征波段选择、数据选择和分组、近红外原始光谱和化学分析参考值的误差分析,并把工具箱集成在一起。还考察了光谱采集的重复性、采样点取样条件,并对实验室测定的参考值进行了重复性及测量误差的考察。通过对比最终选择的是偏最小二乘法(PLS)结合遗传算法自动选波段。除此之外,以模型的交叉验证均方根误差(RMSECV)、预测均方根误差(RMSEP)、质量指标化学参考值与预测值间的相对误差为指标筛选最佳建模参数。建模结果显示,多糖模型预测值与化学参考值间的相对误差可控制在10%内,可溶性固形物误差在5%内,pH误差在4%内。生产使用表明,所建立的模型可有效应用于在线、快速对质量指标做出准确的预测。

关键词: 近红外光谱, 偏最小二乘, 中草药, 质量控制, 变量选择

Abstract: Chemometric model development methods were investigated for the application of the near infrared spectroscopy (NIR)to on-line real-time monitoring of the content of polysaccharides,the content of soluble solids as well as pH of a liquid tonic. A system engineering approach was employed in building chemometric models via integration of spectra preprocessing,feature wave number selection,grouping and data selection for training and validation,as well as examination of the raw NIR measurements and laboratory analytical reference values. The final selected methods for data pre-processing,feature wave number selection and model building were the first order derivative,genetic algorithm,and PLS. The model performance was evaluated by RMSEC,RMSEV,and RMSEP through cross validation and assessed using test data as well as real data from the industrial process. It was shown that the relative error between the predicted value and the reference value could be controlled within 10% for the content of polysaccharide. The relative errors for predicting soluble solid and pH were controlled within 5% and 4%,respectively. The models were successfully used in commercial applications for timely estimation of the product quality related properties.

Key words: near infrared spectroscopy, partial least squares, Chinese herbal medicine, quality control, variable selection

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn