[1] KOYAMA Y,TANAKA I,ADACHI H,et al. Crystal and electronic structures of superstructural Li1-x[Co1/3Ni1/3Mn1/3]O2 (0 ≤ x ≤ 1)[J]. Journal of Power Sources,2003,119-121:644-648. [2] YABUUCHI N,OHZUKU T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries[J]. Journal of Power Sources,2003,119-121:171-174. [3] HE Y S,MA Z F,LIAO X Z,et al. Synthesis and characterization of submicron-sized LiNi1/3Co1/3Mn1/3O2 by a simple self-propagating solid-state metathesis method[J]. Journal of Power Sources,2007, 163(2):1053-1058. [4] LIU J,QIU W,YU L,et al. Synthesis and electrochemical characterization of layered Li(Ni1/3Co1/3Mn1/3)O2 cathode materials by low-temperature solid-state reaction[J]. Journal of Alloys and Compounds,2008,449(1-2):326-330. [5] TAN L, LIU H. High rate charge-discharge properties of LiNi1/3Co1/3Mn1/3O2 synthesized via a low temperature solid-state method[J]. Solid State Ionics,2010,181(33-34):1530-1533. [6] HOU P,WANG X,SONG D,et al. Design,synthesis,and performances of double-shelled LiNi0.5Co0.2Mn0.3O2 as cathode for long-life and safe Li-ion battery[J]. Journal of Power Sources,2014, 265:174-181. [7] LIANG L,DU K,PENG Z,et al. Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries[J]. Electrochimica Acta,2014,130:82-89. [8] HUA W B,GUO X D,ZHENG Z,et al. Uncovering a facile large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 nanoflowers for high power lithium-ion batteries[J]. Journal of Power Sources,2015,275:200-206. [9] YANG Y,XU S,XIE M,et al. Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method:a case of Ni1/3Co1/3Mn1/3(OH)2[J]. Journal of Alloys and Compounds,2015,619:846-853. [10] WOO S G,HAN J H,KIM K J,et al. Surface modification by sulfated zirconia on high-capacity nickel-based cathode materials for Li-ion batteries[J]. Electrochimica Acta,2015,153:115-121. [11] LEE K S,MYUBG S T,SUN Y K. Microwave synthesis of spherical Li[Ni0.4Co0.2Mn0.4]O2 powders as a positive electrode material for lithium batteries[J]. Chemistry of Materials,2007,19:2727-2729. [12] HUA C, DU K, TAN C, et al. Study of full concentration-gradient Li(Ni0.8Co0.1Mn0.1)O2 cathode material for lithium ion batteries[J]. Journal of Alloys and Compounds,2014, 614:264-270. [13] PAN C C,BANKS C E,SONG W X,et al. Recent development of LiNixCoyMnzO2:impact of micro/nano structures for imparting improvements in lithium batteries[J]. Transactions of Nonferrous Metals Society of China,2013,23(1):108-119. [14] MEI T,ZHU Y,TANG K,et al. Synchronously synthesized core-shell LiNi1/3Co1/3Mn1/3O2/carbon nanocomposites as cathode materials for high performance lithium ion batteries[J]. RSC Advances,2012,2(33):12886. [15] YANG W,ZHANG H L. Effects of synthesis methods on the performance of LiNi0.4Co0.2Mn0.4O2[J]. International Journal of Electrochemical Science,2013,8(9):11606-11614. [16] WANG F, XIAO S, CHANG Z, et al. Nanoporous LiNi1/3Co1/3Mn1/3O2 as an ultra-fast charge cathode material for aqueous rechargeable lithium batteries[J]. Chemical Communications,2013,49(80):9209-9211. [17] XIONG W,JIANG Y,YANG Z,et al. High-performance hierarchical LiNi1/3Co1/3Mn1/3O2 microspheres synthesized via a facile templatesacrificial route[J]. Journal of Alloys and Compounds,2014,589:615-621. [18] OLJACA M,BLIZANAC B,DU PASQUIER A,et al. Novel LiNi1/3Co1/3Mn1/3O2 cathode morphologies for high power Li-ion batteries[J]. Journal of Power Sources,2014,248:729-738. [19] HSIEH C T,CHEN Y F,PAI C T,et al. Synthesis of lithium nickel cobalt manganese oxide cathode materials by infrared induction heating[J]. Journal of Power Sources,2014,269:31-36. [20] HSIEH C T,HSU H H,MO C Y,et al. Medium-frequency induction sintering of lithium nickel cobalt manganese oxide cathode materials for lithium ion batteries[J]. Solid State Ionics,2015,270:39-46. [21] GONG C,LV W,QU L,et al. Syntheses and electrochemical properties of layered Li0.95Na0.05Ni1/3Co1/3Mn1/3O2 and LiNi1/3Co1/3Mn1/3O2[J]. Journal of Power Sources,2014,247:151-155. [22] HUA W, ZHANG J, ZHENG Z, et al. Na-doped Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode material with both high rate capability and high tap density for lithium ion batteries[J]. Dalton Transactions, 2014,43(39):14824-14832. [23] ZHU H,XIE T,CHEN Z,et al. The impact of vanadium substitution on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2[J]. Electrochimica Acta,2014,135:77-85. [24] NAYAK P K,GRINBLAT J,LEVI M,et al. TEM and Raman spectroscopy evidence of layered to spinel phase transformation in layered LiNi1/3Mn1/3Co1/3O2 upon cycling to higher voltages[J]. Journal of Electroanalytical Chemistry,2014,733:6-19. [25] MARKUS I M,LIN F,KAM K C,et al. Computational and experimental investigation of Ti substitution in Li1(NixMnxCo1-2x-yTiy)O2 for lithium ion batteries[J]. The Journal of Physical Chemistry Letters,2014,5(21):3649-3655. [26] LIU L,SUN K,ZHANG N,et al. Improvement of high-voltage cycling behavior of Li(Ni1/3Co1/3Mn1/3)O2 cathodes by Mg,Cr,and Al substitution[J]. Journal of Solid State Electrochemistry,2008,13(9):1381-1386. [27] YUE P,WANG Z,GUO H,et al. A low temperature fluorine substitution on the electrochemical performance of layered LiNi0.8Co0.1Mn0.1O2-zFz cathode materials[J]. Electrochimica Acta, 2013,92:1-8. [28] ZHANG H L, LIU S. Synthesis and characterization of LiNi1/3Mn1/3Co1/3O2-xClx as cathode materials for lithium Ion batteries at 55℃[J]. Advances in Materials Science and Engineering,2013, 2013:1-6. [29] YUE P,WANG Z,LI X,et al. The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution[J]. Electrochimica Acta,2013,95:112-118. [30] SHIN H S,SHIN D,SUN Y K. Improvement of electrochemical properties of Li[Ni0.4Co0.2Mn(0.4-x)Mgx]O2-yFy cathode materials at high voltage region[J]. Electrochimica Acta,2006,52(4):1477-1482. [31] MOFID W E,IVANOV S,KONKIN A,et al. A high performance layered transition metal oxide cathode material obtained by simultaneous aluminum and iron cationic substitution[J]. Journal of Power Sources,2014,268:414-422. [32] ARAKI K,TAGUCHI N,SAKAEBE H,et al. Electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material modified by coating with Al2O3 nanoparticles[J]. Journal of Power Sources,2014, 269:236-243. [33] WU Y,ZHUO L,MING J,et al. Coating of Al2O3 on layered LiNi1/3Mn1/3Co1/3O2 using CO2 as green precipitant and their improved electrochemical performance for lithium ion batteries[J]. Journal of Energy Chemistry,2013,22(3):468-476. [34] YANO A,AOYAMA S,SHIKANO M,et al. Surface structure and high-voltage charge/discharge characteristics of Al-oxide coated LiNi1/3Mn1/3Co1/3O2 cathodes[J]. Journal of the Electrochemical Society,2015,162(2):A3137-A3144. [35] LIU X H,KOU L Q,SHI T,et al. Excellent high rate capability and high voltage cycling stability of Y2O3-coated LiNi0.5Co0.2Mn0.3O2[J]. Journal of Power Sources,2014,267:874-880. [36] CHEN Y,ZHANG Y,CHEN B,et al. An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating[J]. Journal of Power Sources,2014,256:20-27. [37] SCOTT I D,JUNG Y S,CAVANAGH A S,et al. Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications[J]. Nano Letters, 2011,11(2):414-418. [38] KONG J Z,REN C,TAI G A,et al. Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material[J]. Journal of Power Sources,2014,266:433-439. [39] SHI S J,TU J P,TANG Y Y,et al. Enhanced electrochemical performance of LiF-modified LiNi1/3Mn1/3Co1/3O2 cathode materials for Li-ion batteries[J]. Journal of Power Sources,2013,225:338-346. [40] YANG K,FAN L Z,GUO J,et al. Significant improvement of electrochemical properties of AlF3-coated LiNi0.5Co0.2Mn0.3O2 cathode materials[J]. Electrochimica Acta,2012,63:363-368. [41] WANG C, CHEN L, ZHANG H, et al. Li2ZrO3 coated LiNi1/3Mn1/3Co1/3O2 for high performance cathode material in lithium batteries[J]. Electrochimica Acta,2014,119:236-242. [42] HUANG Y,JIN F M,CHEN F J,et al. Improved cycle stability and high-rate capability of Li3VO4-coated Li[Ni0.5Co0.2Mn0.3]O2 cathode material under different voltages[J]. Journal of Power Sources,2014, 256:1-7. [43] JU S H,KANG I S,LEE Y S,et al. Improvement of the cycling performance of LiNi0.6Co0.2Mn0.2O2 cathode active materials by a dual-conductive polymer coating[J]. ACS Applied Materials & Interfaces,2014,6(4):2546-2552. [44] XIONG X,DING D,WANG Z,et al. Surface modification of LiNi0.8Co0.1Mn0.1O2 with conducting polypyrrole[J]. Journal of Solid State Electrochemistry,2014,18(9):2619-2624. [45] ZHOU F,QIU K,PENG G,et al. Silver/carbon nanotube hybrids:a novel conductive network for high-rate lithium ion batteries[J]. Electrochimica Acta,2015,151:16-20. [46] JAN S S,NURGUL S,SHI X,et al. Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification[J]. Electrochimica Acta,2014,149:86-93. [47] HAN Z,YU J,ZHAN H,et al. Sb2O3-modified LiNi1/3Mn1/3Co1/3O2 material with enhanced thermal safety and electrochemical property[J]. Journal of Power Sources,2014,254:106-111. [48] KONG J Z,ZHOU F,WANG C B,et al. Effects of Li source and calcination temperature on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 lithium-ion cathode materials[J].Journal of Alloys and Compounds,2013,554:221-226. [49] KONG J Z, ZHAI H F, REN C, et al. High-capacity Li(Ni0.5Co0.2Mn0.3)O2 lithium-ion battery cathode synthesized using a green chelating agent[J]. Journal of Solid State Electrochemistry, 2013,18(1):181-188. [50] 兰州金里能源有限科技公司.长高温循环镍钴锰酸锂NCM523三元材料及其制备方法:201310726770.X[P]. 2014.03.26 [51] 华为科技有限公司.石墨烯基复合三元材料及其制备方法与锂离子电池:201210576366.4[P]. 2014.07.02 [52] 全国化学与物理电源学术年会. 第29届全国化学与物理电源学术年会论文集[C].天津:中国化学与物理电源行业协会,2011. |