[1] 舒杰明, 高云玲, 姚克俭, 等. 香豆素类荧光传感器检测金属离子的研究进展[J]. 化工进展, 2014, 33(12): 3144-3156. [2] de Silva A P, Gunaratne H Q N, Gunnlaugsson T, et al. Signaling recognition events with fluorescent sensors and switches[J]. Chem. Rev., 1997, 97: 1515-1566. [3] Kim J S, Quang D T. Calixarene-derived fluorescent probes[J]. Chem. Rev., 2007, 107: 3780-3799. [4] Kim S K, Lee S H, Lee J Y, et al. An excimer-based, binuclear, on-off switchable calix[4]crown chemosensor[J]. J. Am. Chem. Soc., 2004, 126: 16499-16506. [5] Matsushita M, Meijler M M, Wirsching P, et al. A blue fluorescent antibody-cofactor sensor for mercury[J]. Org. Lett., 2005, 7: 4943-4946. [6] Chae M Y, Czarnik A W. Fluorometric chemodosimetry. Mercury(Ⅱ) and silver(I) indication in water via enhanced fluorescence signaling[J]. J. Am. Chem. Soc., 1992, 114: 9704-9705. [7] Cho D G, Sessler J L. Modern reaction-based indicator systems[J]. Chem. Soc. Rev., 2009, 38: 1647-1662. [8] Du J, Hu M, Fan J, et al. Fluorescent chemodosimeters using “mild” chemical events for the detection of small anions and cations in biological and environmental media[J]. Chem. Soc. Rev., 2012, 41: 4511-4535. [9] 冷冰, 田禾. 反应型汞离子光化学传感器[J]. 化学进展, 2010, 22(5): 837-844. [10] Jun M E, Roy B, Ahn K H. “Turn-on” fluorescent sensing with “reactive” probes[J]. Chem. Commun., 2011, 47: 7583-7601. [11] Zhang G, Zhang D, Yin S, et al. 1,3-Dithiole-2-thione derivatives featuring an anthracene unit: New selective chemodosimeters for Hg(Ⅱ) ion[J]. Chem. Commun., 2005, 41: 2161-2163. [12] Liu B, Tian H. A selective fluorescent ratiometric chemodosimeter for mercury ion[J]. Chem. Commun., 2005, 41: 3156-3158. [13] Leng B, Zou L, Jiang J, et al. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using chemodosimeter-functionalized gold nanoparticles[J]. Sensors and Actuat. B, 2009, 140: 162-169. [14] Lee M H, Lee S W, Kim S H, et al. Nanomolar Hg(Ⅱ) detection using Nile blue chemodosimeter in biological media[J]. Org. Lett., 2009, 11: 2101-2104. [15] Ros-Lis J, Marcos M D, Martínez-Máñez R, et al. A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg2+ ions[J]. Angew. Chem., Int. Ed., 2005, 44: 4405-4407. [16] Yang Y K, Yook K J, Tae J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media[J]. J. Am. Chem. Soc., 2005, 127: 16760-16761. [17] Cheng X, Li S, Zhong A, et al. New fluorescent probes for mercury(Ⅱ) with simple structure[J]. Sensor and Actuat B: Chemical, 2011, 157: 57-63. [18] Tang Y, He F, Yu M, et al. A reversible and highly selective fluorescent sensor for mercury (Ⅱ) using poly(thiophene)s that contain thymine moieties[J]. Macromol. Rapid Commun., 2006, 27: 389-392. [19] Fan L, Zhang Y, Jones W E. Design and synthesis of fluorescence “turn-on” chemosensors based on photoi nduced electron transfer in conjugated polymers[J]. Macromolecules, 2005, 38: 2844-2849. [20] Yao Z, Bai H, Li C, et al. Analyte -induced aggregation of conjugated polyelectrolytes : Role of the charged moieties and its sensing application[J]. Chem. Commun., 2010, 46: 5094-5096. [21] Lv F, Feng X, Tang H, et al. Development of film sensors based on conjugated polymers for copper (Ⅱ) ion detection[J]. Adv. Funct. Mater., 2011, 21: 845-850. [22] Lee S, Park K, Kim K, et al. Activatable imaging probes with amplified fluorescent signals[J]. Chem. Commun., 2008, 44: 4250-4260. [23] Chen C, Chen Y, Chen C, et al. Dipyrrole carboxamide derived selective ratiometric probes for cyanide ion[J]. Org. Lett., 2006, 8: 5053-5056. [24] Qian G, Li X, Wang Z. Visible and near-infrared chemosensor for colorimetric and ratiometric detection of cyanide[J]. J. Mater. Chem., 2009, 19: 522-530. [25] Liu Z, Wang X, Yang Z, et al. Rational design of a dual chemosensor for cyanide anion sensing based on dicyanovinyl-substituted benzofurazan[J]. J. Org. Chem., 2011, 76: 10286-10290. [26] Hong S J, Yoo J, Kim S H, et al. b-Vinyl substituted calix[4]pyrrole as a selective ratiometric sensor for cyanide anion[J]. Chem. Commun., 2009, 45: 189-191. [27] Divya K P, Sreejith S, Balakrishna B, et al. A Zn2+-specific fluorescent molecular probe for the selective detection of endogenous cyanide in biorelevant samples[J]. Chem. Commun., 2010, 46: 6069-6071. [28] Cheng X, Li S, Jia H, et al. Fluorescent and colorimetric probes for mercury(Ⅱ): Tunable structures of electron donor and p-conjugated bridge[J]. Chem. Eur. J., 2012, 18: 1691-1699. [29] Amendola V, Fabbrizzi L. Anion receptors that contain metals as structural units[J]. Chem. Commun., 2009, 38: 513-531. [30] Gale P A, García-Garrido S E, Garric J. Anion receptors based on organic frameworks: Highlights from 2005 and 2006[J]. Chem. Soc. Rev., 2008, 37: 151-190. [31] Gunnlaugsson T, Glynn M, Tocci G M, et al. Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors[J]. Coord. Chem. Rev., 2006, 250: 3094-3117. [32] Cametti M, Rissanen K. Recognition and sensing of fluoride anion[J]. Chem. Commun., 2009, 45: 2809-2829. [33] Cheng X, Li Q, Li C, et al. Azobenzene-based colorimetric chemosensors for rapid naked-eye detection of mercury(Ⅱ)[J]. Chem. Eur. J., 2011, 17: 7276-7281. |