Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (2): 721-729.DOI: 10.16085/j.issn.1000-6613.2021-0711
• Industrial catalysis • Previous Articles Next Articles
MA Haofei1(), YUAN Peng2(), SHEN Boxiong2()
Received:
2021-04-07
Revised:
2021-05-13
Online:
2022-02-23
Published:
2022-02-05
Contact:
YUAN Peng,SHEN Boxiong
通讯作者:
苑鹏,沈伯雄
作者简介:
马颢菲(1998—),女,硕士研究生,研究方向为大气污染控制。E-mail:基金资助:
CLC Number:
MA Haofei, YUAN Peng, SHEN Boxiong. Research progress of preparation and utilization of perovskite-type photocatalyst in romoval of typical gaseous pollutants[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 721-729.
马颢菲, 苑鹏, 沈伯雄. 钙钛矿型光催化剂的制备及脱除典型气态污染物的研究进展[J]. 化工进展, 2022, 41(2): 721-729.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0711
1 | XIE A J, ZHOU X M, HUANG X Y, et al. Cerium-loaded MnOx/attapulgite catalyst for the low-temperature NH3-selective catalytic reduction[J]. Journal of Industrial and Engineering Chemistry, 2017, 49: 230-241. |
2 | ABBAS N, HUSSAIN M, RUSSO N, et al. Studies on the activity and deactivation of novel optimized TiO2 nanoparticles for the abatement of VOCs[J]. Chemical Engineering Journal, 2011, 175: 330-340. |
3 | 杨景瑞, 王莹, 陈虎, 等. 烟气中NOx脱除技术的研究进展[J]. 化工环保, 2020, 40(5): 461-466. |
YANG J R, WANG Y, CHEN H, et al. Research progresses on NOx removal from flue gas[J]. Environmental Protection of Chemical Industry, 2020, 40(5): 461-466. | |
4 | 杜如鹏. 臭氧注入-活性炭吸附联用工艺脱除燃煤烟气中SO2、NO和Hg0的小试化研究[D]. 厦门: 厦门大学, 2019. |
DU R P. Small-scale experiment study on removal of SO2, NO and Hg0 from coal-fired flue gas by ozone injection-activated carbon adsorption combined process[D]. Xiamen: Xiamen University, 2019. | |
5 | KONG J J, YANG T, RUI Z B, et al. Perovskite-based photocatalysts for organic contaminants removal: current status and future perspectives[J]. Catalysis Today, 2019, 327: 47-63. |
6 | UYGUNER-DEMIREL C S, BIRBEN N C, BEKBOLET M. Elucidation of background organic matter matrix effect on photocatalytic treatment of contaminants using TiO2: a review[J]. Catalysis Today, 2017, 284: 202-214. |
7 | 冯彦梅. 钙钛矿型铌/钛酸盐复合光催化剂的制备、性能及机理研究[D]. 太原: 中北大学, 2019. |
FENG Y M. Study on preparation, photocatalytic properties and mechanism of niobium/titanate composite photocatalysts[D]. Taiyuan: North University of China, 2019. | |
8 | 王建强. 钙钛矿型钽(铌)酸盐纳米光催化剂的制备及性能研究[D]. 北京: 北京理工大学, 2015. |
WANG J Q. Synthesis and property study of perovskite-type tantalite and niobate nano-sized photocatalysts[D]. Beijing: Beijing Institute of Technology, 2015. | |
9 | 黄浩, 赵韦人, 李杨, 等. 金属卤化物钙钛矿光催化材料研究进展[J]. 发光学报, 2020, 41(9): 1058-1081. |
HUANG H, ZHAO W R, LI Y, et al. Research advances of metal halide perovskites for photocatalysis[J]. Chinese Journal of Luminescence, 2020, 41(9): 1058-1081. | |
10 | 高永华. 钙钛矿型复合氧化物催化剂的制备及其在环境催化中的应用[D]. 太原: 太原理工大学, 2017. |
GAO Y H. Synthesis of perovskite-type composite oxide catalyst and its application in environmental catalysis[D]. Taiyuan: Taiyuan University of Technology, 2017. | |
11 | 张欣. La-Mn钙钛矿催化剂同时催化去除NOx和碳烟的研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. |
ZHANG X. Research on simultaneous catalytic removal of NOx and soot by La-Mn perovskite catalyst[D]. Harbin: Harbin Engineering University, 2018. | |
12 | 李红花, 汪浩, 严辉. ABO3钙钛矿型复合氧化物光催化剂设计评述[J]. 化工进展, 2006, 25(11): 1309-1313. |
LI Honghua, WANG Hao, YAN Hui. Review of designing ABO3 pervoskite photocatalysis[J]. Chemical Industry and Enginering Progress, 2006, 25(11): 1309-1313. | |
13 | 谭廷文. 金属掺杂镧钴钙钛矿催化剂制备及去除NO与PM研究[D]. 广州: 广州大学, 2018. |
TANG T W. The study of preparation of metal doped LaCoO3 perovskite catalysts for simultaneous removal NO and PM[D]. Guangzhou: Guangzhou University, 2018. | |
14 | 陈璐, 俞小花, 谢刚, 等. 模板法制备钙钛矿型复合氧化物催化剂的研究进展[J]. 中国稀土学报, 2021, 39(4): 531-542. |
CHEN L, YU X H, XIE G, et al. Research progress in preparation of perovskite-type composite oxide catalyst by template method[J]. Chineserare Earth Journal, 2021, 39(4): 531-542. | |
15 | 雍志清. g-C3N4/ABO3复合材料的制备及光催化性能研究[D]. 天津: 天津大学, 2014. |
YONG Z Q. g-C3N4/ABO3 nanocomposites: preparation and photocatalytic activities[D]. Tianjin: Tianjin University, 2014. | |
16 | 陈宸. 改性钙钛矿型光催化剂去除水体中有机污染物的研究[D]. 北京: 中央民族大学, 2020. |
CHEN C. Study on removal of organic pollutants in water by modified perovskite photocatalyst[D]. Beijing: Central University for Nationalities, 2020. | |
17 | HADJARAB B, BOUGUELIA A, TRARI M. Optical and transport properties of lanthanum-doped stannate BaSnO3[J]. Journal of Physics D: Applied Physics, 2007, 40(19): 5833-5839. |
18 | IRIE H, MARUYAMA Y, HASHIMOTO K. Ag+- and Pb2+-doped SrTiO3 photocatalysts. A correlation between band structure and photocatalytic activity[J]. The Journal of Physical Chemistry C, 2007, 111(4): 1847-1852. |
19 | 陈国强. A3B2X9型非铅基钙钛矿材料的光催化应用研究[D]. 济南: 山东大学, 2020. |
CHEN G Q. Investigation on the photocatalytic application of lead-free perovskite materials of A3B2X9[D]. Jinan: Shandong University, 2020. | |
20 | 唐利娜. 石墨相氮化碳光催化和镧铁钙钛矿电催化分解水的性能研究[D]. 昌吉: 昌吉学院, 2020. |
TANG L N. Study on the water splitting via photocatalysis using graphite phase carbon nitride and electrocatalysis using lanthanum iron perovskite materials[D]. Changji: Changji University, 2020. | |
21 | 汪哲铖. YFe1-xCrxO3的合成及磁性、光催化性能研究[D]. 淮南: 安徽理工大学, 2019. |
WANG Z C. Study on synthesis, magnetic and photocatalytic properties of YFe1-xCrxO3[D]. Huainan: Anhui University of Science & Technology, 2019. | |
22 | BORSE P H, LEE J S, KIM H G. Theoretical band energetics of Ba(M0.5Sn0.5)O3 for solar photoactive applications[J]. Journal of Applied Physics, 2006, 100(12): 124915. |
23 | 郭少红. 卤素钙钛矿和金属有机框架的制备及其CO2光催化还原性能研究[D]. 长春: 吉林大学, 2020. |
GUO S H. Preparation of halide perovskites and metal organic frameworks for studying their photocatalytic CO2 reduction performance[D]. Changchun: Jilin University, 2020. | |
24 | JI S M, BORSE P H, KIM H G GYU, et al. Photocatalytic hydrogen production from water-methanol mixtures using N-doped Sr2Nb2O7 under visible light irradiation: effects of catalyst structure[J]. Physical Chemistry Chemical Physics, 2005, 7(6): 1315-1321. |
25 | ALAMMAR T, HAMM I, WARK M, et al. Low-temperature route to metal titanate perovskite nanoparticles for photocatalytic applications[J]. Applied Catalysis B: Environmental, 2015, 178: 20-28. |
26 | UEDA K, KATO H, KOBAYASHI M, et al. Control of valence band potential and photocatalytic properties of NaxLa1-xTaO1+2xN2-2x oxynitride solid solutions[J]. Journal of Materials Chemistry A, 2013, 1(11): 3667. |
27 | SU Y, WANG S, MENG Y, et al. Dual substitutions of single dopant Cr3+ in perovskite NaTaO3: synthesis, structure, and photocatalytic performance[J]. RSC Advances, 2012, 2(33): 12932. |
28 | GARCÍA-LÓPEZ E, MARCÌ G, PULEO F, et al. La1-xSrxCo1-yFeyO3-δ perovskites: preparation, characterization and solar photocatalytic activity[J]. Applied Catalysis B: Environmental, 2015, 178: 218-225. |
29 | WANG D F, KAKO T, YE J H. Efficient photocatalytic decomposition of acetaldehyde over a solid-solution perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3 under visible-light irradiation[J]. Journal of the American Chemical Society, 2008, 130(9): 2724-2725. |
30 | COMES R B, SUSHKO P V, HEALD S M, et al. Band-gap reduction and dopant interaction in epitaxial La, Cr co-doped SrTiO3 thin films[J]. Chemistry of Materials, 2014, 26(24): 7073-7082. |
31 | SUN X M, WU J, TIAN F G, et al. Synergistic effect of surface defect and interface heterostructure on TiO2/BiOIO3 photocatalytic oxide gas-phase mercury[J]. Materials Research Bulletin, 2018, 103: 247-258. |
32 | PAN C S, XU J, WANG Y J, et al. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly[J]. Advanced Functional Materials, 2012, 22(7): 1518-1524. |
33 | KUBACKA A, FERNÁNDEZ-GARCÍA M, COLÓN G. Advanced nanoarchitectures for solar photocatalytic applications[J]. Chemical Reviews, 2012, 112(3): 1555-1614. |
34 | 张仁杰. Bi4Ti3O12基可见光催化剂的制备与光催化性能研究[D]. 青岛: 青岛大学, 2020. |
ZHANG R J. Preparation and photocatalytic performance of Bi4Ti3O12 based visible light photocatalyst[D]. Qingdao: Qingdao University, 2020. | |
35 | ZHANG D D, QI J J, JI H D, et al. Photocatalytic degradation of ofloxacin by perovskite-type NaNbO3 nanorods modified g-C3N4 heterojunction under simulated solar light: theoretical calculation, ofloxacin degradation pathways and toxicity evolution[J]. Chemical Engineering Journal, 2020, 400: 125918. |
36 | CHEN W, HU Y, BA M W. Surface interaction between cubic phase NaNbO3 nanoflowers and Ru nanoparticles for enhancing visible-light driven photosensitized photocatalysis[J]. Applied Surface Science, 2018, 435: 483-493. |
37 | LI X Z, SHI H Y, WANG T S, et al. Photocatalytic removal of NO by Z-scheme mineral based heterojunction intermediated by carbon quantum dots[J]. Applied Surface Science, 2018, 456: 835-844. |
38 | ZHANG Q, HUANG Y, PENG S Q, et al. Perovskite LaFeO3-SrTiO3 composite for synergistically enhanced NO removal under visible light excitation[J]. Applied Catalysis B: Environmental, 2017, 204: 346-357. |
39 | ZHANG Z L, LYU H, LI X Z, et al. Conversion of CaTi1-xMnxO3-δ-based photocatalyst for photocatalytic reduction of NO via structure-reforming of Ti-bearing blast furnace slag[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10299-10309. |
40 | 肖娟, 张浩力. 新型有机-无机杂化钙钛矿发光材料的研究进展[J]. 物理化学学报, 2016, 32(8): 1894-1912. |
XIOA J, ZHANG H L. Recent progress in organic-inorganic hybrid perovskite materials for luminescence applications[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1894-1912. | |
41 | ZHANG Y L, ZHAO Y C, XIONG Z, et al. Elemental mercury removal by I--doped Bi2WO6 with remarkable visible-light-driven photocatalytic oxidation[J]. Applied Catalysis B: Environmental, 2021, 282: 119534. |
42 | ARDIZZONE S, BIANCHI C L, CAPPELLETTI G, et al. Photocatalytic degradation of toluene in the gas phase: relationship between surface species and catalyst features[J]. Environmental Science & Technology, 2008, 42(17): 6671-6676. |
43 | AO C H, LEE S C, YU J Z, et al. Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs[J]. Applied Catalysis B: Environmental, 2004, 54(1): 41-50. |
44 | 李佳芮. 宽带隙半导体光催化降解VOCs的增强性能及反应机理研究[D]. 重庆: 重庆工商大学, 2020. |
LI J R. Photocatalytic VOCs oxidation enhancement performance and reaction mechnism of wide bandgap semiconductor photocatalysts[D]. Chongqing: Chongqing Technology and Business University, 2020. | |
45 | LEE Y E, CHUNG W C, CHANG M B. Photocatalytic oxidation of toluene and isopropanol by LaFeO3/black-TiO2[J]. Environmental Science and Pollution Research, 2019, 26(20): 20908-20919. |
46 | CHEN J Y, HE Z G, LI G Y, et al. Visible-light-enhanced photothermocatalytic activity of ABO3-type perovskites for the decontamination of gaseous styrene[J]. Applied Catalysis B: Environmental, 2017, 209: 146-154. |
47 | ZHOU P Y, ZHANG A C, ZHANG D, et al. Efficient removal of Hg0 from simulated flue gas by novel magnetic Ag2WO4/BiOI/CoFe2O4 photocatalysts[J]. Chemical Engineering Journal, 2019, 373: 780-791. |
48 | 敖冉, 马丽萍, 王立春, 等. 钙钛矿协同催化氧化烟气中Hg0和NO的研究进展[J]. 环境工程, 2019, 37(S1): 562-567. |
AO R, MA L P, WANG L C, et al. Research progress for synergetic catalytic oxidation removal of Hg0 and NO over perovskite in flue gas[J]. Environmental Engineering, 2019, 37(S1): 562-567. | |
49 | AO C H, LEE S C, ZOU S C, et al. Inhibition effect of SO2 on NOx and VOCs during the photodegradation of synchronous indoor air pollutants at parts per billion(ppb) level by TiO2[J]. Applied Catalysis B: Environmental, 2004, 49(3): 187-193. |
50 | LIN F W, SHAO J M, TANG H R, et al. Enhancement of NO oxidation activity and SO2 resistance over LaMnO3+δ perovskites catalysts with metal substitution and acid treatment[J]. Applied Surface Science, 2019, 479: 234-246. |
51 | HODJATI S, PETIT C, PITCHON V, et al. Absorption/desorption of NOx process on perovskites: impact of SO2 on the storage capacity of BaSnO3 and strategy to develop thioresistance[J]. Applied Catalysis B: Environmental, 2001, 30(3/4): 247-257. |
52 | ZHANG-STEENWINKEL Y, CASTRICUM H L, BECKERS J, et al. Dielectric heating effects on the activity and SO2 resistance of La0.8Ce0.2MnO3 perovskite for methane oxidation[J]. Journal of Catalysis, 2004, 221(2): 523-531. |
53 | XIAN H, LI F L, LI X G, et al. Influence of preparation conditions to structure property, NOx and SO2 sorption behavior of the BaFeO3-x perovskite catalyst[J]. Fuel Processing Technology, 2011, 92(9): 1718-1724. |
54 | XIA D H, HU L L, HE C, et al. Simultaneous photocatalytic elimination of gaseous NO and SO2 in a BiOI/Al2O3-padded trickling scrubber under visible light[J]. Chemical Engineering Journal, 2015, 279: 929-938. |
55 | LIU Y, NING P, LI K, et al. Simultaneous removal of NOx and SO2 by low-temperature selective catalytic reduction over modified activated carbon catalysts[J]. Russian Journal of Physical Chemistry A, 2017, 91(3): 490-499. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[6] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[10] | ZHU Jie, JIN Jing, DING Zhenghao, YANG Huipan, HOU Fengxiao. Modification of CaSO4 oxygen carrier by Zhundong coal ash in chemical looping gasification and its mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4628-4635. |
[11] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[12] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[13] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[14] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[15] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |