Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (12): 6696-6704.DOI: 10.16085/j.issn.1000-6613.2020-2582
• Industrial catalysis • Previous Articles Next Articles
LIU Haihua1(), LI Yanchun1(), DING Chuanmin1, GE Hui2, LI Xuekuan2, ZHANG Wei1
Received:
2020-12-30
Revised:
2021-03-16
Online:
2021-12-21
Published:
2021-12-05
Contact:
LI Yanchun
刘海华1(), 李艳春1(), 丁传敏1, 葛晖2, 李学宽2, 张玮1
通讯作者:
李艳春
作者简介:
刘海华(1994—)男,硕士研究生,研究方向为合成气制芳烃。E-mail:基金资助:
CLC Number:
LIU Haihua, LI Yanchun, DING Chuanmin, GE Hui, LI Xuekuan, ZHANG Wei. Catalytic performance of ZnZr/HZSM-5 bifunctional catalyst for the alkylation of syngas with benzene[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6696-6704.
刘海华, 李艳春, 丁传敏, 葛晖, 李学宽, 张玮. ZnZr/HZSM-5双功能催化剂在合成气与苯烷基化反应中的催化性能[J]. 化工进展, 2021, 40(12): 6696-6704.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2582
催化剂 | Odefect结合能/eV | Olattice结合能/eV | |
---|---|---|---|
ZrO2 | 529~533 | 528~531 | 24.46 |
ZnO-ZrO2 | 529~533 | 528~531 | 25.32 |
ZnO/ZrO2 | 529~533 | 528~531 | 30.46 |
ZnZr4Ox | 529~533 | 528~531 | 38.95 |
催化剂 | Odefect结合能/eV | Olattice结合能/eV | |
---|---|---|---|
ZrO2 | 529~533 | 528~531 | 24.46 |
ZnO-ZrO2 | 529~533 | 528~531 | 25.32 |
ZnO/ZrO2 | 529~533 | 528~531 | 30.46 |
ZnZr4Ox | 529~533 | 528~531 | 38.95 |
催化剂 | XB | XCO | S产物/% | 碳平衡 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | X | EB | HA | Q1 | Q2 | Q3 | Q4 | C(CO) | C(B) | |||
ZrO2/HZSM-5 | 4.81 | 6.21 | 71.52 | 6.33 | 14.04 | 8.12 | 34.35 | 61.56 | 1.45 | 3.65 | 93.23 | 98.02 |
ZnO/HZSM-5 | 15.38 | 16.06 | 68.94 | 14.15 | 7.07 | 9.83 | 42.62 | 45.18 | 4.73 | 7.36 | 92.49 | 97.43 |
ZnO-ZrO2/HZSM-5 | 19.43 | 21.90 | 62.17 | 22.36 | 7.66 | 7.81 | 41.29 | 37.93 | 8.79 | 11.99 | 92.04 | 97.25 |
ZnO/ZrO2/HZSM-5 | 23.35 | 23.06 | 62.61 | 25.15 | 6.45 | 5.83 | 46.62 | 35.18 | 4.93 | 13.26 | 91.82 | 97.32 |
ZnZr4Ox/HZSM-5 | 29.65 | 30.52 | 57.98 | 28.51 | 7.15 | 6.36 | 47.37 | 34.53 | 6.24 | 11.85 | 92.13 | 96.38 |
催化剂 | XB | XCO | S产物/% | 碳平衡 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | X | EB | HA | Q1 | Q2 | Q3 | Q4 | C(CO) | C(B) | |||
ZrO2/HZSM-5 | 4.81 | 6.21 | 71.52 | 6.33 | 14.04 | 8.12 | 34.35 | 61.56 | 1.45 | 3.65 | 93.23 | 98.02 |
ZnO/HZSM-5 | 15.38 | 16.06 | 68.94 | 14.15 | 7.07 | 9.83 | 42.62 | 45.18 | 4.73 | 7.36 | 92.49 | 97.43 |
ZnO-ZrO2/HZSM-5 | 19.43 | 21.90 | 62.17 | 22.36 | 7.66 | 7.81 | 41.29 | 37.93 | 8.79 | 11.99 | 92.04 | 97.25 |
ZnO/ZrO2/HZSM-5 | 23.35 | 23.06 | 62.61 | 25.15 | 6.45 | 5.83 | 46.62 | 35.18 | 4.93 | 13.26 | 91.82 | 97.32 |
ZnZr4Ox/HZSM-5 | 29.65 | 30.52 | 57.98 | 28.51 | 7.15 | 6.36 | 47.37 | 34.53 | 6.24 | 11.85 | 92.13 | 96.38 |
催化剂 | XB | XCO | S产物/% | 碳平衡 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | X | EB | HA | Q1 | Q2 | Q3 | Q4 | C(CO) | C(B) | |||
ZnZr4Ox/HZSM-5 | 29.65 | 30.52 | 57.98 | 28.51 | 7.15 | 6.36 | 47.37 | 34.53 | 6.24 | 11.85 | 92.13 | 96.38 |
ZnZr2Ox/HZSM-5 | 35.82 | 35.67 | 58.80 | 26.44 | 6.07 | 8.69 | 51.71 | 29.31 | 6.89 | 11.08 | 92.10 | 97.21 |
ZnZr1Ox/HZSM-5 | 34.02 | 33.46 | 58.27 | 27.13 | 6.45 | 8.15 | 49.89 | 30.83 | 9.24 | 10.57 | 91.18 | 96.45 |
催化剂 | XB | XCO | S产物/% | 碳平衡 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | X | EB | HA | Q1 | Q2 | Q3 | Q4 | C(CO) | C(B) | |||
ZnZr4Ox/HZSM-5 | 29.65 | 30.52 | 57.98 | 28.51 | 7.15 | 6.36 | 47.37 | 34.53 | 6.24 | 11.85 | 92.13 | 96.38 |
ZnZr2Ox/HZSM-5 | 35.82 | 35.67 | 58.80 | 26.44 | 6.07 | 8.69 | 51.71 | 29.31 | 6.89 | 11.08 | 92.10 | 97.21 |
ZnZr1Ox/HZSM-5 | 34.02 | 33.46 | 58.27 | 27.13 | 6.45 | 8.15 | 49.89 | 30.83 | 9.24 | 10.57 | 91.18 | 96.45 |
催化剂 | XB | XCO | S产物/% | 碳平衡 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | X | EB | HA | Q1 | Q2 | Q3 | Q4 | C(CO) | C(B) | |||
ZnZr2Ox/HZSM-5(1∶1) | 30.1355 | 36.69 | 55.65 | 26.57 | 7.31 | 10.47 | 46.69 | 33.40 | 11.01 | 8.90 | 93.31 | 97.24 |
ZnZr2Ox/HZSM-5(1∶2) | 35.82 | 35.67 | 58.80 | 26.44 | 6.07 | 8.69 | 51.71 | 29.31 | 6.89 | 11.08 | 92.10 | 97.21 |
ZnZr2Ox/HZSM-5(1∶4) | 21.69 | 26.52 | 62.33 | 18.51 | 10.94 | 8.22 | 55.36 | 23.24 | 8.72 | 12.68 | 93.81 | 96.58 |
ZnZr2Ox-HZSM-5(1∶2) | 5.29 | 22.83 | 70.75 | 11.17 | 11.77 | 6.31 | 17.08 | 57.35 | 6.58 | 18.99 | 92.16 | 98.77 |
催化剂 | XB | XCO | S产物/% | 碳平衡 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | X | EB | HA | Q1 | Q2 | Q3 | Q4 | C(CO) | C(B) | |||
ZnZr2Ox/HZSM-5(1∶1) | 30.1355 | 36.69 | 55.65 | 26.57 | 7.31 | 10.47 | 46.69 | 33.40 | 11.01 | 8.90 | 93.31 | 97.24 |
ZnZr2Ox/HZSM-5(1∶2) | 35.82 | 35.67 | 58.80 | 26.44 | 6.07 | 8.69 | 51.71 | 29.31 | 6.89 | 11.08 | 92.10 | 97.21 |
ZnZr2Ox/HZSM-5(1∶4) | 21.69 | 26.52 | 62.33 | 18.51 | 10.94 | 8.22 | 55.36 | 23.24 | 8.72 | 12.68 | 93.81 | 96.58 |
ZnZr2Ox-HZSM-5(1∶2) | 5.29 | 22.83 | 70.75 | 11.17 | 11.77 | 6.31 | 17.08 | 57.35 | 6.58 | 18.99 | 92.16 | 98.77 |
1 | 郝西维, 刘秋芳, 刘弓, 等. 对二甲苯生产技术开发进展及展望[J]. 洁净煤技术, 2016, 22(5): 25-30. |
HAO X W, LIU Q F, LIU G, et al. Progress and prospect of p-xylene production technologies[J]. Clean Coal Technology, 2016, 22(5): 25-30. | |
2 | BALASAMY R J, ODEDAIRO T, AL-KHATTAF S. Unique catalytic performance of mesoporous molecular sieves containing zeolite units in transformation of m-xylene[J]. Applied Catalysis A: General, 2011, 409/410: 223-233. |
3 | WANG K, DONG M, NIU X J, et al. Highly active and stable Zn/ZSM-5 zeolite catalyst for the conversion of methanol to aromatics: effect of support morphology[J]. Catalysis Science & Technology, 2018, 8(21): 5646-5656. |
4 | CHENG K, KANG J C, KING D L, et al. Advances in catalysis for syngas conversion to hydrocarbons[J]. Advances in Catalysis, 2017, 60: 125-208. |
5 | 庞伟伟, 顾昊辉. 苯/甲苯与甲醇/合成气在ZSM-5体系下烷基化对比[J]. 天然气化工(C1化学与化工), 2018, 43(1): 67-71. |
PANG W W, GU H H. Comparison of alkylation reactions of benzene/toluene with methanol/syngas over ZSM-5 catalysts[J]. Natural Gas Chemical Industry, 2018, 43(1): 67-71. | |
6 | ZHANG M, FANG Y H, YANG F, et al. Core-shell structured catalyst of HZSM-5 zeolite supported on stainless steel fiber for methanol-to-aromatics[J]. Petroleum Science and Technology, 2020, 38(2): 83-90. |
7 | ZHAO X B, ZENG F, ZHAO B, et al. Alkylation activity of benzene with syngas over Cu-based catalysts[J]. China Petroleum Processing & Petrochemical Technology, 2015, 17(1): 31-38. |
8 | YU B, DING C M, WANG J W, et al. Dual effects of zinc species on active sites in bifunctional composite catalysts Zr/H[Zn]ZSM-5 for alkylation of benzene with syngas[J]. The Journal of Physical Chemistry C, 2019, 123(31): 18993-19004. |
9 | BAI Y B, YANG F, LIU X Y, et al. Performance of bifunctional ZnZr/ZSM-5 catalysts in the alkylation of benzene with syngas[J]. Catalysis Letters, 2018, 148(12): 3618-3627. |
10 | YANG F, ZHONG J, LIU X H, et al. A novel catalytic alkylation process of syngas with benzene over the cerium modified platinum supported on HZSM-5 zeolite[J]. Applied Energy, 2018, 226: 22-30. |
11 | HU H L, LYU J H, WANG Q T, et al. Alkylation of benzene with methanol over hierarchical porous ZSM-5: synergy effects of hydrogen atmosphere and zinc modification[J]. RSC Advances, 2015, 5(41): 32679-32684. |
12 | ZHANG R G, DUAN T, WANG B J, et al. Unraveling the role of support surface hydroxyls and its effect on the selectivity of C2 species over Rh/γ-Al2O3 catalyst in syngas conversion: a theoretical study[J]. Applied Surface Science, 2016, 379: 384-394. |
13 | ZAMAN S F, SMITH K J. A DFT study of the effect of K and SiO2 on syngas conversion to methane and methanol over an Mo6P3 cluster[J]. Molecular Simulation, 2010, 36(2): 118-126. |
14 | ZHU Y A, CHEN D, ZHOU X G, et al. DFT studies of dry reforming of methane on Ni catalyst[J]. Catalysis Today, 2009, 148(3/4): 260-267. |
15 | WEN Z H, YANG D Q, HE X, et al. Methylation of benzene with methanol over HZSM-11 and HZSM-5: a density functional theory study[J]. Journal of Molecular Catalysis A: Chemical, 2016, 424: 351-357. |
16 | BEHRENS M, STUDT F, KASATKIN I, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science, 2012, 336(6083): 893-897. |
17 | CHENG K, GU B, LIU X L, et al. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angewandte Chemie International Edition, 2016, 55(15): 4725-4728. |
18 | MA Y C, GE Q J, LI W Z, et al. Methanol synthesis from sulfur-containing syngas over Pd/CeO2 catalyst[J]. Applied Catalysis B: Environmental, 2009, 90(1/2): 99-104. |
19 | LEE D, JUNG G S, LEE H C, et al. Methanol synthesis over Pd/SiO2 with narrow Pd size distribution prepared by using MCM-41 as a support precursor[J]. Catalysis Today, 2006, 111(3/4): 373-378. |
20 | GAO P, LI F, ZHAN H J, et al. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Journal of Catalysis, 2013, 298: 51-60. |
21 | HUANG Z, WANG S, QIN F, et al. Ceria-zirconia/zeolite bifunctional catalyst for highly selective conversion of syngas into aromatics[J]. ChemCatChem, 2018, 10(20): 4519-4524. |
22 | SMITH C, DAGLE V L, FLAKE M, et al. Conversion of syngas-derived C2+ mixed oxygenates to C3—C5 olefins over ZnxZryOz mixed oxide catalysts[J]. Catalysis Science & Technology, 2016, 6(7): 2325-2336. |
23 | WU X M, TAN M H, TIAN S, et al. Designing ZrO2-based catalysts for the direct synthesis of isobutene from syngas: the studies on Zn promoter role[J]. Fuel, 2019, 243: 34-40. |
24 | LIU X L, WANG M H, YIN H R, et al. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J]. ACS Catalysis, 2020, 10(15): 8303-8314. |
25 | LIU Y, XIA C J, WANG Q, et al. Direct dehydrogenation of isobutane to isobutene over Zn-doped ZrO2 metal oxide heterogeneous catalysts[J]. Catalysis Science & Technology, 2018, 8(19): 4916-4924. |
26 | WANG X X, WANG Y Z, YANG C L, et al. A novel microreaction strategy to fabricate superior hybrid zirconium and zinc oxides for methanol synthesis from CO2[J]. Applied Catalysis A: General, 2020, 595: 117507. |
27 | LEE S M, CHOI W J, HWANG K, et al. Effect of catalyst concentration and reaction time on one-step synthesized hypercross linked poly-xylene[J]. Macromolecular Research, 2014, 22(5): 481-486. |
28 | NIZIOLEK A M, ONEL O, FLOUDAS C A. Production of benzene, toluene, and xylenes from natural gas via methanol: process synthesis and global optimization[J]. AIChE Journal, 2016, 62(5): 1531-1556. |
29 | KIM T W, KIM S Y, KIM J C, et al. Selective p-xylene production from biomass-derived dimethylfuran and ethylene over zeolite beta nanosponge catalysts[J]. Applied Catalysis B: Environmental, 2016, 185: 100-109. |
30 | SONG H Q, LAUDENSCHLEGER D, CAREY J J, et al. Spinel-structured ZnCr2O4 with excess Zn is the active ZnO/Cr2O3 catalyst for high-temperature methanol synthesis[J]. ACS Catalysis, 2017, 7(11): 7610-7622. |
31 | ZHANG X P, ZHANG M, ZHANG J F, et al. Methane decomposition and carbon deposition over Ni/ZrO2 catalysts: comparison of amorphous, tetragonal, and monoclinic zirconia phase[J]. International Journal of Hydrogen Energy, 2019, 44(33): 17887-17899. |
32 | ADEBAJO M O, LONG M A, FROST R L. Further evidence for the oxidative methylation of benzene with methane over zeolite catalysts[J]. Catalysis Communications, 2004, 5(3): 125-130. |
33 | WANG X M, XU J, QI G D, et al. Alkylation of benzene with methane over ZnZSM-5 zeolites studied with solid-state NMR spectroscopy[J]. The Journal of Physical Chemistry C, 2013, 117(8): 4018-4023. |
[1] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[2] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[3] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[4] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[5] | WANG Jiaxin, PAN Yong, XIONG Xinyi, WAN Xiaoyue, WANG Jianchao. Reaction process and hazards of dinitrotoluene preparation by one-step catalytic nitration of toluene [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3420-3430. |
[6] | WANG Darui, SUN Hongmin, XUE Mingwei, WANG Yiyan, LIU Wei, YANG Weimin. Efficient synthesis of fully crystalline ZSM-5 zeolite catalyst by microwave method and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3582-3588. |
[7] | DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065. |
[8] | WU Heping, CAO Ning, XU Yuanyuan, CAO Yunbo, LI Yudong, YANG Qiang, LU Hao. Rapid separation of hydrofluoric acid and alkylated oil [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2845-2853. |
[9] | WANG Zijian, KE Ming, SONG Zhaozheng, LI Jiahan, TONG Yanbing, SUN Jinru. Progress in alkylation of gasoline with molecular sieve catalyst for benzene reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2371-2389. |
[10] | RUAN Peng, YANG Runnong, LIN Zirong, SUN Yongming. Advances in catalysts for catalytic partial oxidation of methane to syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1832-1846. |
[11] | TIAN Yuan, LOU Shujie, MENG Shanru, YAN Jingru, XIAO Haicheng. Recent progress of Co-based catalysts for higher alcohols synthesis form syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1869-1876. |
[12] | ZHOU Yiming, QI Suitao, ZHOU Yuliang, TAN Xiao, SHI Libin, YANG Bolun. Research progress in the hydrogenation and dehydrogenation technology of polycyclic aromatic hydrocarbon liquid organic hydrogen carriers [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1000-1007. |
[13] | ZHANG Dazhou, LU Wenxin, SHANG Kuanxiang, HU Yuan, ZHU Fan, ZHANG Zongfei. Reaction network analysis of dimethyl oxalate hydrogenation to methyl glycolate and recent progress in the heterogeneous catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 204-214. |
[14] | DENG Shaobi, BIAN Zhoufeng. Application of core-shell structure catalyst in dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 247-254. |
[15] | LI Wanqi, YANG Fengjuan, JIA Dechen, JIANG Weihong, GU Yang. Biological utilization and conversion of syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 73-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |