Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (12): 6688-6695.DOI: 10.16085/j.issn.1000-6613.2020-2560
• Industrial catalysis • Previous Articles Next Articles
WU Jianguo(), WU Dengfeng, CHENG Daojian()
Received:
2020-12-24
Revised:
2021-03-07
Online:
2021-12-21
Published:
2021-12-05
Contact:
CHENG Daojian
通讯作者:
程道建
作者简介:
吴建国(1995—),男,博士研究生,研究方向为丙烷脱氢单原子催化剂的制备与性能。E-mail:基金资助:
CLC Number:
WU Jianguo, WU Dengfeng, CHENG Daojian. Advances in single-atom catalysts for dehydrogenation of propane to propylene[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6688-6695.
吴建国, 吴登峰, 程道建. 丙烷脱氢制丙烯用单原子催化剂研究进展[J]. 化工进展, 2021, 40(12): 6688-6695.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2560
催化剂 | 丙烷转化率/% | 丙烯选择性/% | 炭质量分数/ % |
---|---|---|---|
Pt/CeO2 | 100 | 0 | 0.9(3.4) |
Pt-Sn/CeO2 | 39.5 | 84.5 | 0.5(2.8) |
Pt-Sn/Al2O3 | 32.6 | 71.4 | 0.3(3.0) |
催化剂 | 丙烷转化率/% | 丙烯选择性/% | 炭质量分数/ % |
---|---|---|---|
Pt/CeO2 | 100 | 0 | 0.9(3.4) |
Pt-Sn/CeO2 | 39.5 | 84.5 | 0.5(2.8) |
Pt-Sn/Al2O3 | 32.6 | 71.4 | 0.3(3.0) |
19 | SUN G D, ZHAO Z J, MU R T, et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation[J]. Nature Communications, 2018, 9: 4454. |
20 | CAO X R, JI Y F, LUO Y. Dehydrogenation of propane to propylene by a Pd/Cu single-atom catalyst: insight from first-principles calculations[J]. The Journal of Physical Chemistry C, 2015, 119(2): 1016-1023. |
21 | NIU K F, QI Z H, LI Y Y, et al. Theoretical investigation of on-purpose propane dehydrogenation over the two-dimensional Ru-Pc framework[J]. Journal of Physical Chemistry C, 2019, 123(8): 4969-4976. |
22 | KONG N, FAN X, LIU F, et al. Single vanadium atoms anchored on graphitic carbon nitride as a high-performance catalyst for non-oxidative propane dehydrogenation[J]. ACS Nano, 2020, 14(5): 5772-5779. |
23 | 巩金龙, 孙国栋, 赵志坚, 等. 氧化铝负载的PtCu单原子合金催化剂及其制备方法和应用: CN108620092A[P]. 2018-10-09. |
GONG Jinlong, SUN Guodong, ZHAO Zhijian, et al. Alumina-supported PtCu single-atom alloy catalysts and its preparation method and application: CN108620092A[P]. 2018-10-09. | |
24 | 乔波涛, 郭亚琳, 黄家辉, 等. 一种铂单原子催化剂的制备及其在丙烷脱氢制丙烯反应中的应用: CN110237840A[P]. 2019-09-17. |
QIAO Botao, GUO Yalin, HUANG Jiahui, et al. Preparation of platinum monoatomic catalyst and application of catalyst in reaction of propane dehydrogenation to propylene: CN110237840A[P]. 2019-09-17. | |
25 | 李亚栋, 陈晨, 李杨, 等. 用于低碳烃类脱氢制低碳烯烃的单原子催化剂及催化方法: CN109225306B[P]. 2019-01-18. |
LI Yadong, CHEN Chen, LI Yang, et al. Monoatomic catalyst for preparation of low-carbon olefin by means of dehydrogenation of lower low-carbon hydrocarbons, and catalytic method: CN109225306B[P]. 2019-01-18. | |
26 | SUN Q M, WANG N, FAN Q Y, et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation[J]. Angewandte Chemie International Edition, 2020, 59(44): 19450-19459. |
27 | NAKAYA Y, HIRAYAMA J, YAMAZOE S, et al. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation[J]. Nature Communications, 2020, 11: 2838. |
28 | LIU L C, LOPEZ-HARO M, LOPES C W, et al. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites[J]. Nature Catalysis, 2020, 3(8): 628-638. |
29 | LIU L C, DÍAZ U, ARENAL R, et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D[J]. Nature Materials, 2017, 16(1): 132-138. |
1 | SATTLER J J H B, RUIZ-MARTINEZ J, SANTILLAN-JIMENEZ E, et al. Catalytic dehydrogenation of light alkanes on metals and metal oxides[J]. Chemical Reviews, 2014, 114(20): 10613-10653. |
2 | CORMA A, MELO F V, SAUVANAUD L, et al. Light cracked naphtha processing: controlling chemistry for maximum propylene production[J]. Catalysis Today, 2005, 107/108: 699-706. |
3 | LI J Z, WEI Y X, CHEN J R, et al. Observation of heptamethylbenzenium cation over SAPO-type molecular sieve DNL-6 under real MTO conversion conditions[J]. Journal of the American Chemical Society, 2012, 134(2): 836-839. |
4 | 苏建伟, 牛海宁. 丙烷脱氢制丙烯技术进展[J]. 化工科技, 2006, 14(4): 62-66. |
SU Jianwei, NIU Haining. Technology progress of dehydrogenation from propane to propylene[J]. Science & Technology in Chemical Industry, 2006, 14(4): 62-66. | |
5 | ZHU J, YANG M L, YU Y D, et al. Size-dependent reaction mechanism and kinetics for propane dehydrogenation over Pt catalysts[J]. ACS Catalysis, 2015, 5(11): 6310-6319. |
6 | SANTHOSH KUMAR M, CHEN D, WALMSLEY J C, et al. Dehydrogenation of propane over Pt-SBA-15: effect of Pt particle size[J]. Catalysis Communications, 2008, 9(5): 747-750. |
7 | YANG X F, WANG A Q, QIAO B T, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1740-1748. |
8 | 张宁强, 李伶聪, 黄星, 等. 单原子催化剂的研究进展[J]. 中国稀土学报, 2018, 36(5): 513-532. |
ZHANG Ningqiang, LI Lingcong, HUANG Xing, et al. Research progress of single-atom catalysis[J]. Journal of the Chinese Society of Rare Earths, 2018, 36(5): 513-532. | |
9 | QIAO B T, WANG A Q, YANG X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641. |
10 | ZHANG W, WANG H Z, JIANG J W, et al. Size dependence of Pt catalysts for propane dehydrogenation: from atomically dispersed to nanoparticles[J]. ACS Catalysis, 2020, 10(21): 12932-12942. |
11 | CAO X R. Insight into mechanism and selectivity of propane dehydrogenation over the Pd-doped Cu(111) surface[J]. RSC Advances, 2016, 6(70): 65524-65532. |
12 | ZHANG J, ZHOU R J, CHANG Q Y, et al. Tailoring catalytic properties of V2O3 to propane dehydrogenation through single-atom doping: a DFT study[J]. Catalysis Today, 2021, 368: 46-57. |
13 | CHANG Q Y, YIN Q, MA F, et al. Tuning adsorption and catalytic properties of α-Cr2O3 and ZnO in propane dehydrogenation by creating oxygen vacancy and doping single Pt atom: a comparative first-principles study[J]. Industrial & Engineering Chemistry Research, 2019, 58(24): 10199-10209. |
14 | WOLF M, RAMAN N, TACCARDI N, et al. Capturing spatially resolved kinetic data and coking of Ga-Pt supported catalytically active liquid metal solutions during propane dehydrogenation in situ[J]. Faraday Discussions, 2021, 229: 359-377. |
15 | HU Z P, YANG D D, WANG Z, et al. State-of-the-art catalysts for direct dehydrogenation of propane to propylene[J]. Chinese Journal of Catalysis, 2019, 40(9): 1233-1254. |
16 | GAO X Q, LU W D, HU S Z, et al. Rod-shaped porous alumina-supported Cr2O3 catalyst with low acidity for propane dehydrogenation[J]. Chinese Journal of Catalysis, 2019, 40(2): 184-191. |
30 | LIU L C, LOPEZ-HARO M, LOPES C W, et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis[J]. Nature Materials, 2019, 18(8): 866-873. |
31 | 邓高明. Al2O3担载Pt基催化剂的丙烷脱氢性能研究[D]. 大连: 大连理工大学, 2016. |
17 | XIONG H F, LIN S, GOETZE J, et al. Thermally stable and regenerable platinum-tin clusters for propane dehydrogenation prepared by atom trapping on ceria[J]. Angewandte Chemie International Edition, 2017, 56(31): 8986-8991. |
18 | MA F, CHANG Q Y, YIN Q, et al. Rational screening of single-atom-doped ZnO catalysts for propane dehydrogenation from microkinetic analysis[J]. Catalysis Science & Technology, 2020, 10(15): 4938-4951. |
31 | DENG G M. Al2O3 supported Pt-based catalysts for propane dehydrogenation[D]. Dalian: Dalian University of Technology, 2016. |
32 | 李春义, 王国玮. 丙烷/异丁烷脱氢Pt系催化剂的研究进展 Ⅲ.Pt的存在形态、颗粒大小与脱氢性能[J]. 石化技术与应用, 2017, 35(3): 171-176, 184. |
LI Chunyi, WANG Guowei. Pt-based catalysts for propane/isobutane dehydrogenation Ⅲ. Existing state and particle size of Pt[J]. Petrochemical Technology & Application, 2017, 35(3): 171-176, 184. | |
33 | ZHANG H X, ZHANG Y W, ZHOU Y M, et al. Morphology-controlled fabrication of biomorphic alumina-based hierarchical LDH compounds for propane dehydrogenation reaction[J]. New Journal of Chemistry, 2018, 42(1): 103-110. |
34 | SHI L, DENG G M, LI W C, et al. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation[J]. Angewandte Chemie International Edition, 2015, 54(47): 13994-13998. |
35 | WANG T, JIANG F, LIU G, et al. Effects of Ga doping on Pt/CeO2-Al2O3 catalysts for propane dehydrogenation[J]. American Institute of Chemical Engineers, 2016, 62(12): 4365-4376. |
36 | YANG M L, ZHU Y A, ZHOU X G, et al. First-principles calculations of propane dehydrogenation over PtSn catalysts[J]. ACS Catalysis, 2012, 2(6): 1247-1258. |
37 | ZHU Y R, AN Z, SONG H Y, et al. Lattice-confined Sn(Ⅳ/Ⅱ) stabilizing raft-like Pt clusters: high selectivity and durability in propane dehydrogenation[J]. ACS Catalysis, 2017, 7(10): 6973-6978. |
38 | HAN Z, LI S, JIANG F, et al. Propane dehydrogenation over Pt-Cu bimetallic catalysts: the nature of coke deposition and the role of copper[J]. Nanoscale, 2014, 6(17): 10000-10008. |
39 | VU B K, SONG M B, AHN I Y, et al. Pt-Sn alloy phases and coke mobility over Pt-Sn/Al2O3 and Pt-Sn/ZnAl2O4 catalysts for propane dehydrogenation[J]. Applied Catalysis A: General, 2011, 400(1/2): 25-33. |
40 | SUN X Y, LIU M J, HUANG Y Y, et al. Electronic interaction between single Pt atom and vacancies on boron nitride nanosheets and its influence on the catalytic performance in the direct dehydrogenation of propane[J]. Chinese Journal of Catalysis, 2019, 40(6): 819-825. |
[1] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[2] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[3] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[4] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[5] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[6] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[7] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[8] | WU Zhenghao, ZHOU Tianhang, LAN Xingying, XU Chunming. AI-driven innovative design of chemicals in practice and perspective [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. |
[9] | YANG Zhiqiang, ZENG Jijun, MA Yiding, YU Tao, ZHAO Bo, LIU Yingzhe, ZHANG Wei, LYU Jian, LI Xingwen, ZHANG Boya, TANG Nian, LI Li, SUN Dongwei. Research status and future trend of sulfur hexafluoride alternatives [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4093-4107. |
[10] | GUO Jin, ZHANG Geng, CHEN Guohua, ZHU Ming, TAN Yue, LI Wei, XIA Li, HU Kun. Research progress on vehicle liquid hydrogen cylinder design [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4221-4229. |
[11] | YU Shan, DUAN Yuangang, ZHANG Yixin, TANG Chun, FU Mengyao, HUANG Jinyuan, ZHOU Ying. Research progress of catalysts for two-step hydrogen sulfide decomposition to produce hydrogen and sulfur [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3780-3790. |
[12] | LI Lanyu, HUANG Xinye, WANG Xiaonan, QIU Tong. Reflection and prospects on the intelligent transformation of chemical engineering research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. |
[13] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[14] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[15] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |