Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (12): 6409-6422.DOI: 10.16085/j.issn.1000-6613.2021-1379
• Column: multiphase flow test • Previous Articles Next Articles
LIU Shaobin1,2(), QI Hong1,2(), YU Zhiqiang1,2, HE Mingjian1,2, YU Xikui3
Received:
2021-06-30
Revised:
2021-09-05
Online:
2021-12-21
Published:
2021-12-05
Contact:
QI Hong
刘少斌1,2(), 齐宏1,2(), 余智强1,2, 何明键1,2, 于喜奎3
通讯作者:
齐宏
作者简介:
刘少斌(1995—),男,硕士,研究方向为微小结构的流动换热性能优化。E-mail:基金资助:
CLC Number:
LIU Shaobin, QI Hong, YU Zhiqiang, HE Mingjian, YU Xikui. Performance analysis and parameter optimization of mini-channel using Taguchi method[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6409-6422.
刘少斌, 齐宏, 余智强, 何明键, 于喜奎. 基于Taguchi方法的微小通道性能分析与参数优化[J]. 化工进展, 2021, 40(12): 6409-6422.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1379
内边长d1/mm | 外边长D1/mm | 波纹角θ1/(°) | 节距臂长L4/mm |
---|---|---|---|
2.5 | 3 | 120 | 10 |
内边长d1/mm | 外边长D1/mm | 波纹角θ1/(°) | 节距臂长L4/mm |
---|---|---|---|
2.5 | 3 | 120 | 10 |
外边长D2/mm | 入口平台S1/mm | 翅片间距S2/mm | 翅片倾角θ2/(°) | 中间平台S3/mm | 翅片长度S4/mm | 翅片厚度δ2/mm |
---|---|---|---|---|---|---|
6 | 2.7 | 4 | 30 | 3 | 4 | 0.5 |
外边长D2/mm | 入口平台S1/mm | 翅片间距S2/mm | 翅片倾角θ2/(°) | 中间平台S3/mm | 翅片长度S4/mm | 翅片厚度δ2/mm |
---|---|---|---|---|---|---|
6 | 2.7 | 4 | 30 | 3 | 4 | 0.5 |
外边长D3/mm | 突起间距L5/mm | 突起宽度δ3/mm | 圆球半径d2/mm |
---|---|---|---|
9 | 4 | 1 | 1 |
外边长D3/mm | 突起间距L5/mm | 突起宽度δ3/mm | 圆球半径d2/mm |
---|---|---|---|
9 | 4 | 1 | 1 |
水平 | 工质入口温度 /K | 工质流动状态 /m·s-1 | 壁面加热温度 /K | 通道流型 |
---|---|---|---|---|
水平1 | 293.15 | 0.30 | 373.15 | 直通道 |
水平2 | 308.15 | 0.59 | 398.15 | 波纹通道 |
水平3 | 323.15 | 0.89 | 423.15 | 正弦通道 |
水平4 | 338.15 | 1.19 | 448.15 | 百叶窗通道 |
水平5 | 353.15 | 1.49 | 473.15 | 圆柱阵列通道 |
水平 | 工质入口温度 /K | 工质流动状态 /m·s-1 | 壁面加热温度 /K | 通道流型 |
---|---|---|---|---|
水平1 | 293.15 | 0.30 | 373.15 | 直通道 |
水平2 | 308.15 | 0.59 | 398.15 | 波纹通道 |
水平3 | 323.15 | 0.89 | 423.15 | 正弦通道 |
水平4 | 338.15 | 1.19 | 448.15 | 百叶窗通道 |
水平5 | 353.15 | 1.49 | 473.15 | 圆柱阵列通道 |
材料 | 密度ρ /kg·m-3 | 比定压热容cp /J·kg-1·K-1 | 热导率λ /W·m-1·K-1 |
---|---|---|---|
铝 | 2719 | 871 | 202.4 |
材料 | 密度ρ /kg·m-3 | 比定压热容cp /J·kg-1·K-1 | 热导率λ /W·m-1·K-1 |
---|---|---|---|
铝 | 2719 | 871 | 202.4 |
热物性 | 拟合函数(5MPa) | 确定系数R2 |
---|---|---|
热导率λ/W·m-1·K-1 | p1=1.73×10-7,p2=-3373×10-4,p3=0.21 | 0.9996 |
密度ρ/kg·m-3 | a1=782.4,b1=287.6,c1=298.2,a2=224,b2=585.1,c2=126.9,a3=119.7,b3=671.9,c3=48.89 | 0.9985 |
比定压热容cp/kJ·kg-1·K-1 | p1=5.01×10-6,p2=1.57×10-3,p3=1.13 | 0.9958 |
黏度μ/μPa·s | a=2.05×107,b=-3.63×10-2,c=6686,d=-7.51×10-3 | 0.9998 |
热物性 | 拟合函数(5MPa) | 确定系数R2 |
---|---|---|
热导率λ/W·m-1·K-1 | p1=1.73×10-7,p2=-3373×10-4,p3=0.21 | 0.9996 |
密度ρ/kg·m-3 | a1=782.4,b1=287.6,c1=298.2,a2=224,b2=585.1,c2=126.9,a3=119.7,b3=671.9,c3=48.89 | 0.9985 |
比定压热容cp/kJ·kg-1·K-1 | p1=5.01×10-6,p2=1.57×10-3,p3=1.13 | 0.9958 |
黏度μ/μPa·s | a=2.05×107,b=-3.63×10-2,c=6686,d=-7.51×10-3 | 0.9998 |
项目 | 水平 | 入口温度A | 入口流速B | 壁面温度C | 通道流型D |
---|---|---|---|---|---|
平均信噪比 | 1 | 36.71 | 32.13 | 36.33 | 31.90 |
2 | 36.83 | 35.37 | 37.28 | 37.24 | |
3 | 36.69 | 37.55 | 37.17 | 34.71 | |
4 | 37.22 | 39.26 | 36.97 | 39.72 | |
5 | 37.42 | 40.57 | 37.12 | 41.31 | |
R极差 | 0.74 | 8.44 | 0.96 | 9.41 | |
贡献度 | 3.78% | 43.17% | 4.92% | 48.13% | |
排序 | 4 | 2 | 3 | 1 |
项目 | 水平 | 入口温度A | 入口流速B | 壁面温度C | 通道流型D |
---|---|---|---|---|---|
平均信噪比 | 1 | 36.71 | 32.13 | 36.33 | 31.90 |
2 | 36.83 | 35.37 | 37.28 | 37.24 | |
3 | 36.69 | 37.55 | 37.17 | 34.71 | |
4 | 37.22 | 39.26 | 36.97 | 39.72 | |
5 | 37.42 | 40.57 | 37.12 | 41.31 | |
R极差 | 0.74 | 8.44 | 0.96 | 9.41 | |
贡献度 | 3.78% | 43.17% | 4.92% | 48.13% | |
排序 | 4 | 2 | 3 | 1 |
项目 | 水平 | 入口温度A | 入口流速B | 壁面温度C | 通道流型D |
---|---|---|---|---|---|
平均信噪比 | 1 | 88.38 | 81.28 | 80.16 | 84.05 |
2 | 88.83 | 83.72 | 85.27 | 88.34 | |
3 | 86.48 | 86.67 | 87.23 | 87.48 | |
4 | 84.82 | 89.07 | 88.96 | 85.96 | |
5 | 82.43 | 90.19 | 89.32 | 85.11 | |
R极差 | 6.40 | 8.90 | 9.16 | 4.29 | |
贡献度 | 22.26% | 30.95% | 31.86% | 14.93% | |
排序 | 3 | 2 | 1 | 4 |
项目 | 水平 | 入口温度A | 入口流速B | 壁面温度C | 通道流型D |
---|---|---|---|---|---|
平均信噪比 | 1 | 88.38 | 81.28 | 80.16 | 84.05 |
2 | 88.83 | 83.72 | 85.27 | 88.34 | |
3 | 86.48 | 86.67 | 87.23 | 87.48 | |
4 | 84.82 | 89.07 | 88.96 | 85.96 | |
5 | 82.43 | 90.19 | 89.32 | 85.11 | |
R极差 | 6.40 | 8.90 | 9.16 | 4.29 | |
贡献度 | 22.26% | 30.95% | 31.86% | 14.93% | |
排序 | 3 | 2 | 1 | 4 |
项目 | 水平 | 入口温度 | 入口流速 | 壁面温度 | 通道流型 |
---|---|---|---|---|---|
平均信噪比 | 1 | -38.41 | -36.86 | -39.37 | -43.04 |
2 | -39.26 | -38.82 | -39.31 | -38.57 | |
3 | -40.00 | -40.37 | -39.54 | -40.73 | |
4 | -40.04 | -40.86 | -40.10 | -38.26 | |
5 | -40.67 | -41.47 | -40.06 | -37.78 | |
R极差 | 2.26 | 4.60 | 0.79 | 5.25 | |
贡献度 | 17.52% | 35.67% | 6.12% | 40.69% | |
排序 | 3 | 2 | 4 | 1 |
项目 | 水平 | 入口温度 | 入口流速 | 壁面温度 | 通道流型 |
---|---|---|---|---|---|
平均信噪比 | 1 | -38.41 | -36.86 | -39.37 | -43.04 |
2 | -39.26 | -38.82 | -39.31 | -38.57 | |
3 | -40.00 | -40.37 | -39.54 | -40.73 | |
4 | -40.04 | -40.86 | -40.10 | -38.26 | |
5 | -40.67 | -41.47 | -40.06 | -37.78 | |
R极差 | 2.26 | 4.60 | 0.79 | 5.25 | |
贡献度 | 17.52% | 35.67% | 6.12% | 40.69% | |
排序 | 3 | 2 | 4 | 1 |
项目 | 水平 | 入口温度 | 入口流速 | 壁面温度 | 通道流型 |
---|---|---|---|---|---|
平均信噪比 | 1 | 22.78 | 37.45 | 22.28 | 28.81 |
2 | 22.09 | 27.55 | 22.43 | 14.36 | |
3 | 23.05 | 20.66 | 23.31 | 24.00 | |
4 | 23.53 | 16.10 | 23.26 | 23.90 | |
5 | 23.62 | 13.31 | 23.79 | 24.00 | |
R极差 | 1.53 | 24.14 | 1.51 | 14.46 | |
贡献度 | 3.67% | 57.97% | 3.62% | 32.74% | |
排序 | 3 | 1 | 4 | 2 |
项目 | 水平 | 入口温度 | 入口流速 | 壁面温度 | 通道流型 |
---|---|---|---|---|---|
平均信噪比 | 1 | 22.78 | 37.45 | 22.28 | 28.81 |
2 | 22.09 | 27.55 | 22.43 | 14.36 | |
3 | 23.05 | 20.66 | 23.31 | 24.00 | |
4 | 23.53 | 16.10 | 23.26 | 23.90 | |
5 | 23.62 | 13.31 | 23.79 | 24.00 | |
R极差 | 1.53 | 24.14 | 1.51 | 14.46 | |
贡献度 | 3.67% | 57.97% | 3.62% | 32.74% | |
排序 | 3 | 1 | 4 | 2 |
项目 | 水平 | 入口温度 | 入口流速 | 壁面温度 | 通道流型 |
---|---|---|---|---|---|
平均信噪比 | 1 | 19.18 | 16.96 | 18.58 | 26.37 |
2 | 18.33 | 18.49 | 18.60 | 11.73 | |
3 | 19.20 | 19.26 | 19.46 | 20.85 | |
4 | 18.98 | 19.72 | 19.34 | 18.58 | |
5 | 19.53 | 20.80 | 19.24 | 17.69 | |
R极差 | 1.20 | 3.83 | 0.88 | 14.63 | |
贡献度 | 5.84% | 18.65% | 4.28% | 71.23% | |
排序 | 3 | 2 | 4 | 1 |
项目 | 水平 | 入口温度 | 入口流速 | 壁面温度 | 通道流型 |
---|---|---|---|---|---|
平均信噪比 | 1 | 19.18 | 16.96 | 18.58 | 26.37 |
2 | 18.33 | 18.49 | 18.60 | 11.73 | |
3 | 19.20 | 19.26 | 19.46 | 20.85 | |
4 | 18.98 | 19.72 | 19.34 | 18.58 | |
5 | 19.53 | 20.80 | 19.24 | 17.69 | |
R极差 | 1.20 | 3.83 | 0.88 | 14.63 | |
贡献度 | 5.84% | 18.65% | 4.28% | 71.23% | |
排序 | 3 | 2 | 4 | 1 |
项目 | 水平 | 入口温度 | 入口流速 | 壁面温度 | 通道流型 |
---|---|---|---|---|---|
平均信噪比 | 1 | -32.02 | -31.21 | -33.17 | -34.25 |
2 | -33.15 | -32.66 | -33.11 | -34.66 | |
3 | -33.60 | -33.95 | -33.05 | -33.78 | |
4 | -33.71 | -34.28 | -33.65 | -32.06 | |
5 | -34.15 | -34.54 | -33.65 | -31.89 | |
R极差 | 2.14 | 3.33 | 0.61 | 2.77 | |
贡献度 | 24.20% | 37.62% | 6.89% | 31.29% | |
排序 | 3 | 2 | 4 | 1 |
项目 | 水平 | 入口温度 | 入口流速 | 壁面温度 | 通道流型 |
---|---|---|---|---|---|
平均信噪比 | 1 | -32.02 | -31.21 | -33.17 | -34.25 |
2 | -33.15 | -32.66 | -33.11 | -34.66 | |
3 | -33.60 | -33.95 | -33.05 | -33.78 | |
4 | -33.71 | -34.28 | -33.65 | -32.06 | |
5 | -34.15 | -34.54 | -33.65 | -31.89 | |
R极差 | 2.14 | 3.33 | 0.61 | 2.77 | |
贡献度 | 24.20% | 37.62% | 6.89% | 31.29% | |
排序 | 3 | 2 | 4 | 1 |
项目 | 水平 | 入口温度 | 入口流速 | 壁面温度 | 通道流型 |
---|---|---|---|---|---|
平均信噪比 | 1 | 43.10 | 37.79 | 42.52 | 40.69 |
2 | 42.95 | 41.53 | 43.48 | 41.15 | |
3 | 43.09 | 43.96 | 43.66 | 41.66 | |
4 | 43.54 | 45.83 | 43.41 | 45.91 | |
5 | 43.93 | 47.50 | 43.53 | 47.21 | |
R极差 | 0.99 | 9.72 | 1.14 | 6.52 | |
贡献度 | 5.39% | 52.91% | 6.21% | 35.49% | |
排序 | 4 | 1 | 3 | 2 |
项目 | 水平 | 入口温度 | 入口流速 | 壁面温度 | 通道流型 |
---|---|---|---|---|---|
平均信噪比 | 1 | 43.10 | 37.79 | 42.52 | 40.69 |
2 | 42.95 | 41.53 | 43.48 | 41.15 | |
3 | 43.09 | 43.96 | 43.66 | 41.66 | |
4 | 43.54 | 45.83 | 43.41 | 45.91 | |
5 | 43.93 | 47.50 | 43.53 | 47.21 | |
R极差 | 0.99 | 9.72 | 1.14 | 6.52 | |
贡献度 | 5.39% | 52.91% | 6.21% | 35.49% | |
排序 | 4 | 1 | 3 | 2 |
项目 | 水平 | 入口温度 | 入口流速 | 壁面温度 | 通道流型 |
---|---|---|---|---|---|
平均信噪比 | 1 | -9.27 | -1.68 | -17.99 | -10.66 |
2 | -9.52 | -9.14 | -12.72 | -20.85 | |
3 | -10.89 | -13.09 | -9.88 | -12.05 | |
4 | -12.07 | -15.26 | -8.20 | -7.66 | |
5 | -14.38 | -16.95 | -7.32 | -4.90 | |
R极差 | 5.11 | 15.27 | 10.67 | 15.96 | |
贡献度 | 10.87% | 32.49% | 22.7% | 33.94% | |
排序 | 4 | 2 | 3 | 1 |
项目 | 水平 | 入口温度 | 入口流速 | 壁面温度 | 通道流型 |
---|---|---|---|---|---|
平均信噪比 | 1 | -9.27 | -1.68 | -17.99 | -10.66 |
2 | -9.52 | -9.14 | -12.72 | -20.85 | |
3 | -10.89 | -13.09 | -9.88 | -12.05 | |
4 | -12.07 | -15.26 | -8.20 | -7.66 | |
5 | -14.38 | -16.95 | -7.32 | -4.90 | |
R极差 | 5.11 | 15.27 | 10.67 | 15.96 | |
贡献度 | 10.87% | 32.49% | 22.7% | 33.94% | |
排序 | 4 | 2 | 3 | 1 |
流道类型 | 换热面积/m2 | 结构体积/m3 | 紧凑比/m2·m-3 |
---|---|---|---|
直通道 | 2.50×10-3 | 6.88×10-7 | 3636.37 |
波纹通道 | 2.80×10-3 | 7.71×10-7 | 3636.31 |
正弦通道 | 2.80×10-3 | 7.71×10-7 | 3635.83 |
百叶窗通道 | 4.12×10-3 | 1.06×10-6 | 3882.27 |
圆柱阵列通道 | 6.45×10-3 | 1.86×10-6 | 3458.77 |
流道类型 | 换热面积/m2 | 结构体积/m3 | 紧凑比/m2·m-3 |
---|---|---|---|
直通道 | 2.50×10-3 | 6.88×10-7 | 3636.37 |
波纹通道 | 2.80×10-3 | 7.71×10-7 | 3636.31 |
正弦通道 | 2.80×10-3 | 7.71×10-7 | 3635.83 |
百叶窗通道 | 4.12×10-3 | 1.06×10-6 | 3882.27 |
圆柱阵列通道 | 6.45×10-3 | 1.86×10-6 | 3458.77 |
实验 | 分类 | 最优组合 | pcost/% | Qtotal/W | Nu·F-1/3 | J·F-1/3 | Qt·pt-1 |
---|---|---|---|---|---|---|---|
正交 | Nu·F-1/3最大 | A1B5C5D5 | 2.77 | 44596.22 | 375.14 | 2.44×10-2 | 0.12 |
J·F-1/3最大 | A3B1C3D5 | 0.17 | 12393.19 | 127.87 | 3.45×10-2 | 1.46 | |
Qt·pt-1最大 | A3B1C3D5 | 0.17 | 12393.19 | 127.87 | 3.45×10-2 | 1.46 | |
优化 | Nu·F-1/3最大 | A5B5C3D5 | 4.2 | 30300.90 | 378.22 | 1.86×10-2 | 0.24 |
J·F-1/3最大 | A1B1C3D5 | 0.18 | 15901.88 | 118.78 | 1.87×10-2 | 2.89 | |
Qt·pt-1最大 | A1B1C5D5 | 0.2 | 20849.86 | 104.41 | 2.97×10-2 | 3.31 |
实验 | 分类 | 最优组合 | pcost/% | Qtotal/W | Nu·F-1/3 | J·F-1/3 | Qt·pt-1 |
---|---|---|---|---|---|---|---|
正交 | Nu·F-1/3最大 | A1B5C5D5 | 2.77 | 44596.22 | 375.14 | 2.44×10-2 | 0.12 |
J·F-1/3最大 | A3B1C3D5 | 0.17 | 12393.19 | 127.87 | 3.45×10-2 | 1.46 | |
Qt·pt-1最大 | A3B1C3D5 | 0.17 | 12393.19 | 127.87 | 3.45×10-2 | 1.46 | |
优化 | Nu·F-1/3最大 | A5B5C3D5 | 4.2 | 30300.90 | 378.22 | 1.86×10-2 | 0.24 |
J·F-1/3最大 | A1B1C3D5 | 0.18 | 15901.88 | 118.78 | 1.87×10-2 | 2.89 | |
Qt·pt-1最大 | A1B1C5D5 | 0.2 | 20849.86 | 104.41 | 2.97×10-2 | 3.31 |
评价指标 | SNR average | SNRA | SNRB | SNRC | SNRD | SNR predict | SNR analyze |
---|---|---|---|---|---|---|---|
J·F-1/3 | -33.33 | -32.02 | -31.21 | -33.05 | -31.89 | -28.19 | -28.47 |
Nu·F-1/3 | 43.32 | 43.93 | 47.50 | 43.66 | 47.21 | 52.33 | 51.55 |
Qt·Pt-1 | -11.22 | -9.27 | -1.69 | -7.32 | -4.90 | 10.51 | 10.39 |
评价指标 | SNR average | SNRA | SNRB | SNRC | SNRD | SNR predict | SNR analyze |
---|---|---|---|---|---|---|---|
J·F-1/3 | -33.33 | -32.02 | -31.21 | -33.05 | -31.89 | -28.19 | -28.47 |
Nu·F-1/3 | 43.32 | 43.93 | 47.50 | 43.66 | 47.21 | 52.33 | 51.55 |
Qt·Pt-1 | -11.22 | -9.27 | -1.69 | -7.32 | -4.90 | 10.51 | 10.39 |
19 | DENG H W, ZHANG C B, XU G Q, et al. Density measurements of endothermic hydrocarbon fuel at sub- and supercritical conditions[J]. Journal of Chemical & Engineering Data, 2011, 56(6): 2980-2986. |
20 | DENG H W, ZHANG C B, XU G Q, et al. Viscosity measurements of endothermic hydrocarbon fuel from (298 to 788) K under supercritical pressure conditions[J]. Journal of Chemical & Engineering Data, 2012, 57(2): 358-365. |
21 | ZHANG C B, XU G Q, GAO L, et al. Experimental investigation on heat transfer of a specific fuel (RP-3) flows through downward tubes at supercritical pressure[J]. Journal of Supercritical Fluids, 2012, 72(9): 90-99. |
1 | 徐鹏, 肖延勇. 壳管式换热器强化传热技术研究进展[J]. 机电设备, 2020, 37(4): 72-76. |
XU P, XIAO Y Y. Research progress on heat transfer enhancement technology of shell and tube heat exchanger[J]. Mechanical and Electrical Equipment, 2020, 37(4): 72-76. | |
2 | KANDLIKAR S G, COLIN S, PELES Y, et al. Heat transfer in microchannels-2012 status and research needs[J]. Journal of Heat Transfer-Transactions of the ASME, 2013, 135(9):46-53. |
3 | MAHIAN O, KOLSI L, AMANI M, et al. Recent advances in modeling and simulation of nanofluid flows (Ⅱ): applications[J]. Physics Reports, 2019, 791:1-59. |
4 | CHAMKHA A J, MOLANA M, RAHNAMA A, et al. On the nanofluids applications in microchannels: a comprehensive review [J]. Powder Technology, 2018, 332: 287-322. |
5 | KARAYIANNIS T G, MAHMOUD M M. Flow boiling in microchannels: fundamentals and applications[J]. Applied Thermal Engineering, 2017, 115: 1372-1397. |
6 | NIKITIN K, KATO Y, NGO L. Printed circuit heat exchanger thermal-hydraulic performance in supercritical CO2 experimental loop[J]. International Journal of Refrigeration, 2006, 29(5): 807-814. |
7 | SUI Y, TEO C J, LEE P S, et al. Fluid flow and heat transfer in wavy microchannels[J]. International Journal of Heat and Mass Transfer, 2010, 53(13/14): 2760-2772. |
8 | RYU K, LEE K S. Generalized heat-transfer and fluid-flow correlations for corrugated louvered fins[J]. International Journal of Heat and Mass Transfer, 2015, 83: 604-612. |
9 | 吴学红, 张林, 赵中友, 等. 连续变攻角百叶窗翅片的传热及流动特性[J]. 工程热物理学报, 2016, 37(9): 1935-1939. |
WU Xuehong, ZHANG Lin, ZHAO Zhongyou, et al. The investigation of heat transfer performance and fluid flow in louvered fins with continuous variable angle of attack[J]. Journal of Engineering Thermophysics, 2016, 37(9): 1935-1939. | |
22 | HASAN M I, RAGEB A A, YAGHOUBI M, et al. Influence of channel geometry on the performance of a counter flow microchannel heat exchanger[J]. International Journal of Thermal Sciences, 2009, 48(8): 1607-1618. |
10 | SARANGI S K, MISHRA D P, RAMACHANDRAN H, et al. Analysis and optimization of the curved trapezoidal winglet geometry in a compact heat exchanger[J]. Applied Thermal Engineering, 2021, 182(4): 362-374. |
11 | RAIHAN M F B, AL-ASADI M T, THOMPSON H M. Management of conjugate heat transfer using various arrangements of cylindrical vortex generators in micro-channels[J]. Applied Thermal Engineering, 2021, 182(4): 421-430. |
12 | 李波, 张东辉, 洪黎. 航空发动机燃油热管理系统仿真及试验验证[J]. 燃气涡轮实验与研究, 2019, 32(5): 29-34. |
LI Bo, ZHANG Donghui, HONG Li. Simulation and experimental verification of aero-engine fuel thermal management system[J]. Gas Turbine Experiment and Research, 2019, 32(5): 29-34. | |
13 | 谷俊. 管壳式燃滑油散热器换热特性计算方法及试验验证[J]. 航空发动机, 2013, 39(1): 65-69. |
GU Jun. Calculating method and experimental verification of heat transfer characteristics for tube and shell type fuel and oil heat exchanger[J]. Aeroengine, 2013, 39(1): 65-69. | |
14 | 陈玮玮, 方贤德, 鹿世化, 等. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211. |
CHEN Weiwei, FANG Xiande, LU Shihua, et al. Parameter design of aircraft fuel regeneration cooling thermal management system[J]. CIESC Journal, 2020, 71(S1): 204-211. | |
15 | 吕亚国, 刘振侠. 航空发动机管壳式燃-滑油散热器换热特性计算[J]. 航空动力学报, 2014, 29(12): 2830-2835. |
Yaguo LYU, LIU Zhengxia. Heat transfer characteristics calculation for aero-engine shell-tube fuel-oil heat exchanger[J]. Journal of Aerospace Power, 2014, 29(12): 2830-2835. | |
16 | KANDLIKAR S G. Fundamental issues related to flow boiling in minichannels and microchannels[J]. Experimental Thermal and Fluid Science, 2002, 26(2/3/4):389-407. |
17 | ZHONG F Q, FAN X J, YU G, et al. Heat transfer of aviation kerosene at supercritical conditions[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3): 543-550. |
18 | DENG H W, ZHU K, XU G Q, et al. Isobaric specific heat capacity measurement for kerosene RP-3 in the near-critical and supercritical regions[J]. Journal of Chemical and Engineering Data, 2012, 57: 263-268. |
[1] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[2] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[3] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[4] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[5] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[6] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[7] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[8] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[9] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[10] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[11] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[12] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[13] | LI Lanyu, HUANG Xinye, WANG Xiaonan, QIU Tong. Reflection and prospects on the intelligent transformation of chemical engineering research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. |
[14] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[15] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |