Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S2): 421-433.DOI: 10.16085/j.issn.1000-6613.2021-0900
• Resources and environmental engineering • Previous Articles Next Articles
LIN Fawei1(), ZHENG Fa1, LI Jiantao1, LYU Yahui1, SONG Xuefeng2, XU Chengjun2, MA Wenchen1, CHEN Guanyi3()
Received:
2021-04-27
Revised:
2021-06-22
Online:
2021-11-12
Published:
2021-11-12
Contact:
CHEN Guanyi
林法伟1(), 郑发1, 李建陶1, 吕雅慧1, 宋学峰2, 许成君2, 马文臣1, 陈冠益3()
通讯作者:
陈冠益
作者简介:
林法伟(1993—),男,博士,研究方向为有机固废热化学处理与污染控制。E-mail:基金资助:
CLC Number:
LIN Fawei, ZHENG Fa, LI Jiantao, LYU Yahui, SONG Xuefeng, XU Chengjun, MA Wenchen, CHEN Guanyi. Comparing pyrolysis characteristics of Daqing multi-source oil sludge[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 421-433.
林法伟, 郑发, 李建陶, 吕雅慧, 宋学峰, 许成君, 马文臣, 陈冠益. 大庆多源含油污泥热解特性的对比[J]. 化工进展, 2021, 40(S2): 421-433.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0900
低含油污泥编号 | C | H | N | S | 含油率/% | 高含油污泥编号 | C | H | N | S | 含油率/% |
---|---|---|---|---|---|---|---|---|---|---|---|
L-1# | 14.88 | 2.62 | 0.09 | 0.82 | 13.9 | H-1# | 67.35 | 8.15 | 0.13 | 0.23 | 60.1 |
L-2# | 22.85 | 3.78 | 0.24 | 0.91 | 29.6 | H-2# | 78.09 | 9.92 | 0.16 | 0.18 | 55.9 |
L-3# | 23.66 | 3.80 | 0.17 | 2.38 | 18.2 | H-3# | 81.42 | 11.13 | 0.08 | 0.06 | 69.9 |
L-4# | 18.82 | 3.26 | 0.18 | 1.04 | 16.4 | H-4# | 81.21 | 11.30 | 0.10 | 0.05 | 90.4 |
L-5# | 17.63 | 2.87 | 0.16 | 1.00 | 16.1 | H-5# | 80.78 | 11.54 | 0.06 | 0.04 | 84.9 |
低含油污泥编号 | C | H | N | S | 含油率/% | 高含油污泥编号 | C | H | N | S | 含油率/% |
---|---|---|---|---|---|---|---|---|---|---|---|
L-1# | 14.88 | 2.62 | 0.09 | 0.82 | 13.9 | H-1# | 67.35 | 8.15 | 0.13 | 0.23 | 60.1 |
L-2# | 22.85 | 3.78 | 0.24 | 0.91 | 29.6 | H-2# | 78.09 | 9.92 | 0.16 | 0.18 | 55.9 |
L-3# | 23.66 | 3.80 | 0.17 | 2.38 | 18.2 | H-3# | 81.42 | 11.13 | 0.08 | 0.06 | 69.9 |
L-4# | 18.82 | 3.26 | 0.18 | 1.04 | 16.4 | H-4# | 81.21 | 11.30 | 0.10 | 0.05 | 90.4 |
L-5# | 17.63 | 2.87 | 0.16 | 1.00 | 16.1 | H-5# | 80.78 | 11.54 | 0.06 | 0.04 | 84.9 |
编号 | 阶段 | 拟合曲线 | 相关系数 | Ea/kJ · mol-1 | A/K-1 | 编号 | 阶段 | 拟合曲线 | 相关系数 | Ea/kJ · mol-1 | A/K-1 |
---|---|---|---|---|---|---|---|---|---|---|---|
L-1# | 2 | y=-0.407-553.522x | 0.995 | 4.506 | 2.483 | H-1# | 2 | y=2.048-705.281x | 0.986 | 5.741 | 22.677 |
3 | y=-1.142-135.647x | 0.998 | 1.104 | 4.859 | 3 | y=1.208-105.638x | 0.994 | 0.860 | 65.377 | ||
L-2# | 2 | y=-0.051-578.044x | 0.996 | 4.705 | 3.393 | H-2# | 2 | y=0.826-417.618x | 0.960 | 3.399 | 11.296 |
3 | y=-0.780-114.792x | 0.997 | 0.934 | 8.242 | 3 | y=0.579-55.166x | 0.974 | 0.449 | 66.747 | ||
L-3# | 2 | y=-0.019-596.359x | 0.993 | 4.854 | 3.395 | H-3# | 2 | y=1.405-531.878x | 0.972 | 4.329 | 15.826 |
3 | y=-0.826-107.739x | 0.999 | 0.877 | 8.390 | 3 | y=0.976-68.509x | 0.990 | 0.558 | 79.760 | ||
L-4# | 2 | y=0.002-664.065x | 0.996 | 5.405 | 3.114 | H-4# | 2 | y=1.972-686.868x | 0.986 | 5.591 | 21.604 |
3 | y=-0.953-147.835x | 0.999 | 1.203 | 5.384 | 3 | y=1.057-89.483x | 0.999 | 0.728 | 66.373 | ||
L-5# | 2 | y=-0.201-603.061x | 0.985 | 4.909 | 2.800 | H-5# | 2 | y=2.400-808.187x | 0.994 | 6.579 | 28.145 |
3 | y=-0.953-147.835x | 0.999 | 1.203 | 5.384 | 3 | y=1.334-61.007x | 0.988 | 0.497 | 128.495 |
编号 | 阶段 | 拟合曲线 | 相关系数 | Ea/kJ · mol-1 | A/K-1 | 编号 | 阶段 | 拟合曲线 | 相关系数 | Ea/kJ · mol-1 | A/K-1 |
---|---|---|---|---|---|---|---|---|---|---|---|
L-1# | 2 | y=-0.407-553.522x | 0.995 | 4.506 | 2.483 | H-1# | 2 | y=2.048-705.281x | 0.986 | 5.741 | 22.677 |
3 | y=-1.142-135.647x | 0.998 | 1.104 | 4.859 | 3 | y=1.208-105.638x | 0.994 | 0.860 | 65.377 | ||
L-2# | 2 | y=-0.051-578.044x | 0.996 | 4.705 | 3.393 | H-2# | 2 | y=0.826-417.618x | 0.960 | 3.399 | 11.296 |
3 | y=-0.780-114.792x | 0.997 | 0.934 | 8.242 | 3 | y=0.579-55.166x | 0.974 | 0.449 | 66.747 | ||
L-3# | 2 | y=-0.019-596.359x | 0.993 | 4.854 | 3.395 | H-3# | 2 | y=1.405-531.878x | 0.972 | 4.329 | 15.826 |
3 | y=-0.826-107.739x | 0.999 | 0.877 | 8.390 | 3 | y=0.976-68.509x | 0.990 | 0.558 | 79.760 | ||
L-4# | 2 | y=0.002-664.065x | 0.996 | 5.405 | 3.114 | H-4# | 2 | y=1.972-686.868x | 0.986 | 5.591 | 21.604 |
3 | y=-0.953-147.835x | 0.999 | 1.203 | 5.384 | 3 | y=1.057-89.483x | 0.999 | 0.728 | 66.373 | ||
L-5# | 2 | y=-0.201-603.061x | 0.985 | 4.909 | 2.800 | H-5# | 2 | y=2.400-808.187x | 0.994 | 6.579 | 28.145 |
3 | y=-0.953-147.835x | 0.999 | 1.203 | 5.384 | 3 | y=1.334-61.007x | 0.988 | 0.497 | 128.495 |
1 | WANG J, YIN J, GE L, et al. Characterization of oil sludges from two oil fields in China[J]. Energy & Fuels, 2010, 24(2): 973-978. |
2 | MRAYYAN B, BATTIKHI M N. Biodegradation of total organic carbons (TOC) in Jordanian petroleum sludge[J]. Journal of Hazardous Materials, 2005, 120(1/2/3): 127-134. |
3 | LIU J G, JIANG X M, ZHOU L S, et al. Pyrolysis treatment of oil sludge and model-free kinetics analysis[J]. Journal of Hazardous Materials, 2009, 161(2/3): 1208-1215. |
4 | MATER L, SPERB R M, MADUREIRA L A S, et al. Proposal of a sequential treatment methodology for the safe reuse of oil sludge-contaminated soil[J]. Journal of Hazardous Materials, 2006, 136(3): 967-971. |
5 | ROCHA O R S DA, DANTAS R F, DUARTE M M M B, et al. Oil sludge treatment by photocatalysis applying black and white light[J]. Chemical Engineering Journal, 2010, 157(1): 80-85. |
6 | 谢磊. 含油污泥大物料量热重热解动力学研究[D]. 大连: 大连理工大学, 2013. |
XIE Lei. Study on macro-thermogravimetry kinetics of pyrolysis of oil sludge[D]. Dalian: Dalian University of Technology, 2013. | |
7 | XU N, WANG W X, HAN P F, et al. Effects of ultrasound on oily sludge deoiling[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 914-917. |
8 | HU G J, LI J B, ZENG G M. Recent development in the treatment of oily sludge from petroleum industry: a review[J]. Journal of Hazardous Materials, 2013, 261: 470-490. |
9 | FISHER J A, SCARLETT M J, STOTT A D. Accelerated solvent extraction: an evaluation for screening of soils for selected US EPA semivolatile organic priority pollutants[J]. Environmental Science & Technology, 1997, 31(4): 1120-1127. |
10 | KHAN F I, HUSAIN T, HEJAZI R. An overview and analysis of site remediation technologies[J]. Journal of Environmental Management, 2004, 71(2): 95-122. |
11 | FONTS I, GEA G, AZUARA M, et al. Sewage sludge pyrolysis for liquid production: a review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 2781-2805. |
12 | 陈立业. 浅谈大庆油田经济现状及发展对策[J]. 当代经济, 2016(5): 28-29. |
CHEN Liye. On the economic status and development countermeasures of Daqing Oilfield [J]. Contemporary Economics, 2016(5): 28-29. | |
13 | 李益飞. 青霉素菌渣热解产物特性及生物油催化脱氮机制[D]. 北京: 北京科技大学, 2021. |
LI Yifei. Characteristics of pyrolysis products of penicillin fermentation residue and mechanism of bio-oil catalytic denitrification[D]. Beijing: University of Science and Technology Beijing, 2021. | |
14 | 曹莹菲. 腐解过程中还田秸秆和土壤有机酸、质能及结构变化特征[D]. 杨凌: 西北农林科技大学, 2016. |
CAO Yingfei. Decomposition, organic acids, thermal and structure characteristic in crop residues and soils among straw returning[D]. Yangling: Northwest A & F University, 2016. | |
15 | 宫会丽. 烟叶近红外光谱特征提取与相似性度量研究[D]. 青岛: 中国海洋大学, 2014. |
GONG Huili. Feature extraction and similarity measure on tobacco near infrared spectra[D]. Qingdao: Ocean University of China, 2014. | |
16 | WU Z H, OHTSUKA Y. Nitrogen distribution in a fixed bed pyrolysis of coals with different ranks: formation and source of N2[J]. Energy & Fuels, 1997, 11(2): 477-482. |
17 | 陈爽, 刘会娥, 郭庆杰. 含油污泥热解特性和动力学研究[J]. 石油炼制与化工, 2007, 38(7): 50-53. |
CHEN Shuang, LIU Huie, GUO Qingjie. Study on the pyrolysis behavior and kinetics of oily sludge[J]. Petroleum Processing and Petrochemicals, 2007, 38(7): 50-53. | |
18 | 彭发修. 含油污泥热解动力学研究[D]. 上海: 华东理工大学, 2012. |
PENG Faxiu. Study on dynamics of the oil sludge pyrolysis[D]. Shanghai: East China University of Science and Technology, 2012. | |
19 | 陈爽, 郭庆杰, 王志奇, 等. 含油污泥热解动力学研究[J]. 中国石油大学学报(自然科学版), 2007, 31(4): 116-120. |
CHEN Shuang, GUO Qingjie, WANG Zhiqi, et al. Study on pyrolysis kinetics of refinery oil sludge[J]. Journal of China University of Petroleum (Edition of Natural Science), 2007, 31(4): 116-120. | |
20 | WENG J J, LIU Y X, ZHU Y N, et al. Online study on the co-pyrolysis of coal and corn with vacuum ultraviolet photoionization mass spectrometry[J]. Bioresource Technology, 2017, 244: 125-131. |
21 | MACPHEE J A, CHARLAND J P, GIROUX L. Application of TG-FTIR to the determination of organic oxygen and its speciation in the Argonne premium coal samples[J]. Fuel Processing Technology, 2006, 87(4): 335-341. |
22 | NOWICKI L, LEDAKOWICZ S. Comprehensive characterization of thermal decomposition of sewage sludge by TG-MS[J]. Journal of Analytical and Applied Pyrolysis, 2014, 110: 220-228. |
23 | ZUO W, JIN B S, HUANG Y J, et al. Thermal decomposition of three kinds of sludge by TG-MS and PY-GC/MS[J]. Journal of Thermal Analysis and Calorimetry, 2015, 121(3): 1297-1307. |
24 | LIN B C, HUANG Q X, ALI M, et al. Continuous catalytic pyrolysis of oily sludge using U-shape reactor for producing saturates-enriched light oil[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3101-3108. |
25 | HU H Y, FANG Y, LIU H, et al. The fate of sulfur during rapid pyrolysis of scrap tires[J]. Chemosphere, 2014, 97: 102-107. |
26 | CHEN G Y, LI J T, LI K, et al. Nitrogen, sulfur, chlorine containing pollutants releasing characteristics during pyrolysis and combustion of oily sludge[J]. Fuel, 2020, 273: 117772. |
27 | FRIEBEL J, KÖPSEL R F W. The fate of nitrogen during pyrolysis of German low rank coals—a parameter study[J]. Fuel, 1999, 78(8): 923-932. |
28 | BERDNIKOV V I, GUDIM Y A. Formation of dioxins in high-temperature combustion of chlorine-bearing material[J]. Steel in Translation, 2015, 45(2): 89-93. |
29 | GAO Y X, DING R, WU S, et al. Influence of ultrasonic waves on the removal of different oil components from oily sludge[J]. Environmental Technology, 2015, 36(14): 1771-1775. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[3] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[4] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[5] | TAN Lipeng, SHEN Jun, WANG Yugao, LIU Gang, XU Qingbai. Research progress on blending modification of coal tar pitch and petroleum asphalt [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3749-3759. |
[6] | YAO Liming, WANG Yazhuo, FAN Honggang, GU Qing, YUAN Haoran, CHEN Yong. Treatment status of kitchen waste and its research progress of pyrolysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3791-3801. |
[7] | ZHANG Shan, ZHONG Zhaoping, YANG Yuxuan, DU Haoran, LI Qian. Enrichment of heavy metals in pyrolysis of municipal solid waste by phosphate modified kaolin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3893-3903. |
[8] | SUO Hansheng, JIA Mengda, SONG Guang, LIU Dongqing. Digital twin-driving force for petrochemical smart factory [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3365-3373. |
[9] | YANG Xuzhao, LI Qing, YUAN Kangkang, ZHANG Yingying, HAN Jingli, WU Shide. Thermodynamic properties of Gemini ionic liquid based deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3123-3129. |
[10] | LI Ruolin, HE Shaolin, YUAN Hongying, LIU Boyue, JI Dongli, SONG Yang, LIU Bo, YU Jiqing, XU Yingjun. Effect of in-situ pyrolysis on physical properties of oil shale and groundwater quality [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3309-3318. |
[11] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing biofuels from soapstock via pyrolysis and subsequent catalytic vapor-phase hydrotreating process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2874-2883. |
[12] | DAI Hang, GAO Ruixue, LI Yiguo, ZHU Jin, WANG Jinggang. Research progress on the synthesis of excellent impact and transparency polyesters with high glass transition temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2555-2565. |
[13] | WANG Zhiwei, GUO Shuaihua, WU Mengge, CHEN Yan, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances on catalytic co-pyrolysis of biomass and plastic [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2655-2665. |
[14] | MA Runmei, YANG Haichao, LI Zhengda, LI Shuangxi, ZHAO Xiang, ZHANG Guoqing. Influence analysis of coating on deformation and frictional wear of mechanical seal end for high-speed bearing cavity [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1688-1697. |
[15] | LIANG Yijing, MA Yan, LU Zhanfeng, QIN Fusheng, WAN Junjie, WANG Zhiyuan. Experimental investigation on the anti-coking performance of La1-x Sr x MnO3 perovskite coating [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1769-1778. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |