Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S2): 356-363.DOI: 10.16085/j.issn.1000-6613.2021-0756
• Resources and environmental engineering • Previous Articles Next Articles
SHUI Boyang1,2(), SONG Xiaosan1,2(), FAN Wenjiang3
Received:
2021-04-11
Revised:
2021-05-08
Online:
2021-11-12
Published:
2021-11-12
Contact:
SONG Xiaosan
通讯作者:
宋小三
作者简介:
水博阳(1998—),男,硕士研究生,研究方向为水处理理论与技术。E-mail:基金资助:
CLC Number:
SHUI Boyang, SONG Xiaosan, FAN Wenjiang. Research progress and challenges of photocatalytic technology in water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 356-363.
水博阳, 宋小三, 范文江. 光催化技术在水处理中的研究进展及挑战[J]. 化工进展, 2021, 40(S2): 356-363.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0756
半导体光催化材料 | 禁带宽度/eV | 半导体光催化材料 | 禁带宽度/eV |
---|---|---|---|
TiO2 | 3.2 | Bi2O3 | 2.5~2.8 |
ZnO | 3.2 | WO3 | 2.5 |
g-C3N4 | 2.7~2.8 | CdS | 2.4 |
FeO | 2.4 | Bi2WO3 | 2.9 |
Fe2O3 | 2.2 | Ga2O3 | 4.8 |
半导体光催化材料 | 禁带宽度/eV | 半导体光催化材料 | 禁带宽度/eV |
---|---|---|---|
TiO2 | 3.2 | Bi2O3 | 2.5~2.8 |
ZnO | 3.2 | WO3 | 2.5 |
g-C3N4 | 2.7~2.8 | CdS | 2.4 |
FeO | 2.4 | Bi2WO3 | 2.9 |
Fe2O3 | 2.2 | Ga2O3 | 4.8 |
1 | DONG S, FENG J, FAN M, et al. Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review [J]. RSC Advances, 2015, 5(19): 14610-14630. |
2 | 谷学谦, 董秀芹, 张敏华, 等. 固定化光催化氧化技术研究进展 [J]. 化学反应工程与工艺, 2003, 19(4): 379-384. |
GU Xueqian, DONG Xiuqin, ZHANG Minhua, et al. Research progress of immobilized photocatalytic oxidation technology [J]. Chemical Reaction Engineering and Technology, 2003, 19(4): 379-384. | |
3 | 郑猛猛. 半导体异质结光催化剂的制备及其可见光催化性能研究 [D]. 广州: 华南理工大学, 2016. |
ZHENG Mengmeng. Preparation of semiconductor heterojunction photocatalyst and its visible light catalytic performance [D].Guangzhou: South China University of Technology, 2016. | |
4 | 王丹军, 张洁, 郭莉,等. 基于能带结构理论的半导体光催化材料改性策略 [J]. 无机材料学报, 2015, 30(7): 683-693. |
WANG Danjun, ZHANG Jie, GUO Li, et al. Modification strategy of semiconductor photocatalytic materials based on energy band structure theory [J]. Journal of Inorganic Materials, 2015, 30(7): 683-693. | |
5 | 李贞燕, 陈冰. 纳米二氧化钛光催化氧化油田采出水中萘和芴的影响因素分析 [J]. 环境工程学报, 2015, 9(5): 2106-2112. |
LI Zhenyan, CHEN Bing. Analysis of influencing factors of nano-titanium dioxide photocatalytic oxidation of naphthalene and fluorene in oil field produced water [J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2106-2112. | |
6 | JITPUTTI J, SUZUKI Y, YOSHIKAWA S. Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution [J]. Catalysis Communications, 2008, 9(6): 1265-1271. |
7 | DIEBOLD U. The surface science of titanium dioxide [J]. Surface Science Reports, 2003, 48(5-8): 53-229. |
8 | ZHANG S, GU P, MA R, et al. Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: a critical review [J]. Catalysis Today, 2019, 335:65-77. |
9 | 黄飞, 李祺, 罗森, 等. ZnIn2S4/MIL-125复合纳米材料的制备及光催化活性[J]. 硅酸盐学报, 2021,49(6):1-9. |
HUANG Fei, LI Qi, LUO Sen, et al. Preparation and photocatalytic activity of ZnIn2S4/MIL-125 composite nanomaterials [J]. Journal of the Chinese Ceramic Society, 2021, 49(6):, 1-9. | |
10 | PARK H, PARK Y, KIM W, et al. Surface modification of TiO2 photocatalyst for environmental applications [J]. Journal of Photochemistry & Photobiology C: Photochemistry Reviews, 2013, 15(8): 1-20. |
11 | 林容斌. 染料敏化的MOFs光催化剂的合成、表征及其光催化性能研究[D]. 金华: 浙江师范大学, 2019. |
LIN Rongbin. Synthesis, characterization and photocatalytic performance of dye-sensitized MOFs photocatalyst[D]. Jinhua: Zhejiang Normal University, 2019. | |
12 | LIM S Y, SHEN W, GAO Z. Carbon quantum dots and their applications[J]. Chemical Society Reviews Journal, 2015, 44(1): 362-381. |
13 | MARTINDALE B C, HUTTON G A, CAPUTO C A, et al. Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst [J]. Journal of the American Chemical Society, 2015, 137(18): 6018-6025. |
14 | GUPTA S, TOMAR M, GUPTA V. Enhanced magnetic and electric properties of nanocrystalline Ce modified BFO thin films [J]. Ferroelectrics, 2014, 470(1): 272-279. |
15 | 黄仕元, 王振宇, 李胜, 等. 铁酸铋光催化剂改性的研究进展 [J]. 精细化工, 2021, 38(1): 17-22. |
HUANG Shiyuan, WANG Zhenyu, LI Sheng, et al. Research progress on modification of bismuth ferrite photocatalyst [J]. Fine Chemicals, 2021, 38(1): 17-22. | |
16 | MAULIDIYAH, AZIS T, NURWAHIDAH A T, et al. Photoelectrocatalyst of Fe co-doped N-TiO2 /Ti nanotubes: pesticide degradation of thiamethoxam under UV-visible lights [J]. Environmental Nanotechnology, Monitoring & Management, 2017, 8:103-111. |
17 | ZOU M, XIONG F, GANESHRAJA A S, et al. Visible light photocatalysts (Fe, N): TiO2 from ammonothermally processed, solvothermal self-assembly derived Fe-TiO2 mesoporous microspheres [J]. Materials Chemistry and Physics, 2017, 195:259-267. |
18 | YUAN R, ZHOU B, HUA D, et al. Enhanced photocatalytic degradation of humic acids using Al and Fe co-doped TiO2 nanotubes under UV/ozonation for drinking water purification [J]. Journal of Hazardous Materials, 2013, 262:527-538. |
19 | YUAN R, WANG S, LIU D, et al. Effect of the wavelength on the pathways of 2-MIB and geosmin photocatalytic oxidation in the presence of Fe-N co-doped TiO2[J]. Chemical Engineering Journal, 2018, 353:319-328. |
20 | 李龙. 异质结构复合半导体光催化性能研究 [J]. 广州化工, 2017, 45(2): 22-24. |
LI Long. Study on the photocatalytic performance of heterostructure compound semiconductors [J]. Guangzhou Chemical Industry, 2017, 45(2): 22-24. | |
21 | CHENG J, SHEN Y, CHEN K, et al. Flower-like Bi2WO6/ZnO composite with excellent photocatalytic capability under visible light irradiation [J]. Chinese Journal of Catalysis, 2018, 39(4): 810-820. |
22 | YAPARATNE S, TRIPP C P, AMIRBAHMAN A. Photodegradation of taste and odor compounds in water in the presence of immobilized TiO2-SiO2 photocatalysts [J]. Journal of Hazardous Materials, 2018, 346: 208-217. |
23 | 何菲, 孟爱云, 程蓓, 等. 石墨烯修饰三氧化钨/二氧化钛S型异质结增强的光催化产氢活性(英文) [J]. 催化学报, 2020, 41(1): 13-24. |
HE Fei, MENG Aiyun, CHENG Bei, et al. Enhanced photocatalytic hydrogen production activity of graphene-modified tungsten trioxide/titanium dioxide S-type heterojunction (English) [J]. Chinese Journal of Catalysis, 2020, 41(1): 13-24. | |
24 | 薛金娟. 基于贵金属的复合光催化材料的制备及其性能研究[D]. 南京: 东南大学, 2016. |
XUE Jinjuan. Preparation and performance study of composite photocatalytic materials based on precious metals [D]. Nanjing: Southeast University, 2016. | |
25 | DUAN Y, LUO J, ZHOU S, et al. TiO2-supported Ag nanoclusters with enhanced visible light activity for the photocatalytic removal of NO [J]. Applied Catalysis B: Environmental, 2018, 234:206-212. |
26 | LAWTON L. The destruction of 2-methylisoborneol and geosmin using titanium dioxide photocatalysis [J]. Applied Catalysis B: Environmental, 2003, 44(1): 9-13. |
27 | FOTIOU T, TRIANTIS T M, KALOUDIS T, et al. Photocatalytic degradation of water taste and odour compounds in the presence of polyoxometalates and TiO2: intermediates and degradation pathways [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 286:1-9. |
28 | 周舟. ICPB技术去除两种典型异嗅物质的性能研究 [D].杭州: 浙江大学, 2020. |
ZHOU Zhou. Research on the performance of ICPB technology to remove two typical odorous substances [D]. Hangzhou: Zhejiang University, 2020. | |
29 | 刘芭. TiO2光催化杂化超滤膜对水中嗅味物质及腐殖酸去除的研究 [D]. 上海: 上海交通大学, 2013. |
LIU Ba. Study on the removal of odorants and humic acid by TiO2 photocatalytic hybrid ultrafiltration membrane [D]. Shanghai: Shanghai Jiaotong University, 2013. | |
30 | MAHON J MAC, PILLAI S C, KELLY J M, et al. Solar photocatalytic disinfection of E. coli and bacteriophages MS2, PhiX174 and PR772 using TiO2, ZnO and ruthenium based complexes in a continuous flow system [J]. Journal of Photochemistry and Photobiology B, 2017, 170:79-90. |
31 | 于小迪, 王洪波, 刘麒, 等. 二氧化钛光催化消毒技术在水处理中的研究 [J]. 环境科学与管理, 2013, 38(1): 81-86. |
YU Xiaodi, WANG Hongbo, LIU Qi, et al. Research on titanium dioxide photocatalytic disinfection technology in water treatment [J]. Environmental Science and Management, 2013, 38(1): 81-86. | |
32 | CHENG Rong, SHEN Liangjie, YU Jinhui, et al. Photocatalytic inactivation of bacteriophage f2 with Ag3PO4/g-C3N4 composite under visible light irradiation: performance and mechanism[J]. Catalysts, 2018, 8(10): 406-421. |
33 | 王晓婷, 刘洪君, 李映辉, 等. 连续流光催化消毒器灭活E.coli及病毒的性能 [J]. 环境科学学报, 2018, 38(9): 3645-3651. |
WANG Xiaoting, LIU Hongjun, LI Yinghui, et al. Inactivation of E. coli and viruses by continuous stream photocatalytic disinfector [J]. Acta Scientiae Circumstantiae, 2018, 38(9): 3645-3651. | |
34 | 钟欣, 阮韬, 白壑平,等. 铜掺杂钒酸铋光催化降解橙黄Ⅱ废水及其机理 [J]. 环境工程学报, 2021, 15(3): 857-866. |
ZHONG Xin, RUAN Tao, BAI Heping, et al. Photocatalytic degradation of orange-yellow Ⅱ wastewater by copper-doped bismuth vanadate and its mechanism [J]. Chinese Journal of Environmental Engineering, 2021, 15(3): 857-866. | |
35 | 彭小明, 罗文栋, 胡玉瑛, 等. 磷掺杂的介孔石墨相氮化碳光催化降解染料 [J]. 中国环境科学, 2019, 39(8): 3277-3285. |
PENG Xiaoming, LUO Wendong, HU Yuying, et al. Phosphorus-doped mesoporous graphite phase carbon nitride photocatalytic degradation of dyes [J]. China Environmental Science, 2019, 39(8): 3277-3285. | |
36 | CHEN S, ZAFFRAN J, YANG B. Descriptor design in the computational screening of Ni-based catalysts with balanced activity and stability for dry reforming of methane reaction [J]. ACS Catalysis, 2020, 10(5): 3074-3083. |
37 | CHEN W, YANG Z, XIE Z, et al. Benzothiadiazole functionalized D-A type covalent organic frameworks for effective photocatalytic reduction of aqueous chromium(Ⅵ) [J]. Journal of Materials Chemistry A, 2019, 7(3): 998-1004. |
38 | YOU S, HU Y, LIU X, et al. Synergetic removal of Pb(Ⅱ) and dibutyl phthalate mixed pollutants on Bi2O3-TiO2 composite photocatalyst under visible light [J]. Applied Catalysis B: Environmental, 2018, 232:288-298. |
39 | 李小燕, 陈超, 刘义保, 等. CuO/BiFeO3异质结光催化还原溶液中U(Ⅵ)的性能 [J]. 中国有色金属学报, 2020, 30(6): 1389-1398. |
LI Xiaoyan, CHEN Chao, LIU Yibao, et al. Performance of CuO/BiFeO3 heterojunction photocatalytic reduction of U(Ⅵ) in solution [J]. The Chinese Journal of Nonferrous Metals, 2020, 30(6): 1389-1398. | |
40 | ADHAM S, HUSSAIN A, MINIER-MATAR J, et al. Membrane applications and opportunities for water management in the oil & gas industry [J]. Desalination, 2018, 440: 2-17. |
41 | 胡天佑, 唐瑾, 陈志莉. 石油工业含油废水处理进展[J].水处理技术, 2021, 47(6): 12-17. |
HU Tianyou, TANG Jin, CHEN Zhili. Progress in oily wastewater treatment in petroleum industry[J]. Water Treatment Technology, 2021,47(6): 12-17. | |
42 | SHAHREZAEI F, MANSOURI Y, ZINATIZADEH A A L, et al. Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles [J]. Powder Technology, 2012, 221: 203-212. |
43 | 张运鸽. 用于含油废水净化的TiO2光催化复合材料的研究 [D]. 天津: 天津大学, 2015. |
ZHANG Yunge. Research on TiO2 photocatalytic composite material for purification of oily wastewater [D]. Tianjin: Tianjin University, 2015. | |
44 | MOKHBI Y, KORICHI M, AKCHICHE Z. Combined photocatalytic and Fenton oxidation for oily wastewater treatment [J]. Applied Water Science, 2019, 9(2): 35. |
45 | OCHIAI T, FUJISHIMA A. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(4): 247-262. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[4] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[5] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[6] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[7] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[8] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[9] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[10] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
[11] | LYU Chengyuan, ZHANG Han, YANG Mingwang, DU Jianjun, FAN Jiangli. Recent advances of dioxetane-based afterglow system for bio-imaging [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4108-4122. |
[12] | GAO Cong, CHEN Chenghu, CHEN Xiulai, LIU Liming. Progress and challenges of engineering microorganisms to produce biobased monomers [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4123-4135. |
[13] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[14] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[15] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |