Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S1): 168-181.DOI: 10.16085/j.issn.1000-6613.2021-0353
• Energy processes and technology • Previous Articles Next Articles
WANG Yiwei1(), LIU Zhiqi2, SUN Qiang2, LIU Aixian1, YANG Lanying2, GONG Jing3, GUO Xuqiang1()
Received:
2021-02-20
Revised:
2021-06-14
Online:
2021-11-09
Published:
2021-10-25
Contact:
GUO Xuqiang
王逸伟1(), 刘智琪2, 孙强2, 刘爱贤1, 杨兰英2, 宫敬3, 郭绪强1()
通讯作者:
郭绪强
作者简介:
王逸伟(1987—),男,博士,副教授,研究方向为流体相平衡和水合物。E-mail:基金资助:
CLC Number:
WANG Yiwei, LIU Zhiqi, SUN Qiang, LIU Aixian, YANG Lanying, GONG Jing, GUO Xuqiang. Thermodynamics and kinetics of structure Ⅰ hydrate formation in presence of poly(sodium 4-styrenesulfonate)[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 168-181.
王逸伟, 刘智琪, 孙强, 刘爱贤, 杨兰英, 宫敬, 郭绪强. 聚苯乙烯磺酸钠作用下Ⅰ型水合物的生成热力学与动力学[J]. 化工进展, 2021, 40(S1): 168-181.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0353
温度/K | 纯水压力 | 1.0% PSS溶液压力 | 5.0% PSS溶液压力 | |||
---|---|---|---|---|---|---|
实验 | 模型预测 | 实验 | 模型预测 | 实验 | 模型预测 | |
276.15 | 0.77 | 0.759 | 0.77 | 0.765 | 0.78 | 0.789 |
277.65 | 0.93 | 0.908 | 0.95 | 0.914 | 0.96 | 0.943 |
279.15 | 1.09 | 1.085 | 1.09 | 1.093 | 1.10 | 1.129 |
280.65 | 1.32 | 1.299 | 1.33 | 1.309 | 1.34 | 1.352 |
282.15 | 1.55 | 1.557 | 1.57 | 1.569 | 1.62 | 1.622 |
283.65 | 1.88 | 1.871 | 1.91 | 1.887 | 1.94 | 1.953 |
285.15 | 2.27 | 2.259 | 2.29 | 2.278 | 2.35 | 2.362 |
温度/K | 纯水压力 | 1.0% PSS溶液压力 | 5.0% PSS溶液压力 | |||
---|---|---|---|---|---|---|
实验 | 模型预测 | 实验 | 模型预测 | 实验 | 模型预测 | |
276.15 | 0.77 | 0.759 | 0.77 | 0.765 | 0.78 | 0.789 |
277.65 | 0.93 | 0.908 | 0.95 | 0.914 | 0.96 | 0.943 |
279.15 | 1.09 | 1.085 | 1.09 | 1.093 | 1.10 | 1.129 |
280.65 | 1.32 | 1.299 | 1.33 | 1.309 | 1.34 | 1.352 |
282.15 | 1.55 | 1.557 | 1.57 | 1.569 | 1.62 | 1.622 |
283.65 | 1.88 | 1.871 | 1.91 | 1.887 | 1.94 | 1.953 |
285.15 | 2.27 | 2.259 | 2.29 | 2.278 | 2.35 | 2.362 |
序号 | PSS起始浓度/% | GSCHS/L?L-1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
实验值 | 均值(±浮动) | 实验值 | 均值(±浮动) | 实验值 | 均值(±浮动) | 实验值 | 均值(±浮动) | |||
1 | 0 | 26.3 | 26.3 | 26.3(±0) | 99.1 | 96(±3.1) | 61.5 | 59.6(±1.9) | 0 | 0 |
2 | 0 | 26.3 | 26.3 | 94.9 | 58.9 | 0 | ||||
3 | 0 | 26.3 | 26.3 | 94.0 | 58.4 | 0 | ||||
4 | 0.10 | 26.2 | 25.9 | 25.8(±0.1) | 119.6 | 122.6(±3.0) | 74.3 | 76.2(±1.9) | 0.39 | 0.42(±0.03) |
5 | 0.10 | 26.2 | 25.8 | 125.6 | 78.0 | 0.45 | ||||
6 | 0.10 | 26.2 | 25.8 | 122.6 | 76.2 | 0.42 | ||||
7 | 0.20 | 26.0 | 25.1 | 25.1(±0.1) | 133.0 | 132.4(±3.1) | 82.7 | 82.4(±2) | 1.14 | 1.13(±0.12) |
8 | 0.20 | 26.0 | 25.2 | 129.3 | 80.4 | 1.01 | ||||
9 | 0.20 | 26.0 | 25.1 | 135.0 | 84.0 | 1.23 | ||||
10 | 0.50 | 25.8 | 24.0 | 24.1(±0.1) | 126.8 | 125.8(±2.8) | 79.1 | 78.5(±1.8) | 2.35 | 2.29(±0.17) |
11 | 0.50 | 25.8 | 24.0 | 127.6 | 79.6 | 2.40 | ||||
12 | 0.50 | 25.8 | 24.2 | 123.0 | 76.7 | 2.11 |
序号 | PSS起始浓度/% | GSCHS/L?L-1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
实验值 | 均值(±浮动) | 实验值 | 均值(±浮动) | 实验值 | 均值(±浮动) | 实验值 | 均值(±浮动) | |||
1 | 0 | 26.3 | 26.3 | 26.3(±0) | 99.1 | 96(±3.1) | 61.5 | 59.6(±1.9) | 0 | 0 |
2 | 0 | 26.3 | 26.3 | 94.9 | 58.9 | 0 | ||||
3 | 0 | 26.3 | 26.3 | 94.0 | 58.4 | 0 | ||||
4 | 0.10 | 26.2 | 25.9 | 25.8(±0.1) | 119.6 | 122.6(±3.0) | 74.3 | 76.2(±1.9) | 0.39 | 0.42(±0.03) |
5 | 0.10 | 26.2 | 25.8 | 125.6 | 78.0 | 0.45 | ||||
6 | 0.10 | 26.2 | 25.8 | 122.6 | 76.2 | 0.42 | ||||
7 | 0.20 | 26.0 | 25.1 | 25.1(±0.1) | 133.0 | 132.4(±3.1) | 82.7 | 82.4(±2) | 1.14 | 1.13(±0.12) |
8 | 0.20 | 26.0 | 25.2 | 129.3 | 80.4 | 1.01 | ||||
9 | 0.20 | 26.0 | 25.1 | 135.0 | 84.0 | 1.23 | ||||
10 | 0.50 | 25.8 | 24.0 | 24.1(±0.1) | 126.8 | 125.8(±2.8) | 79.1 | 78.5(±1.8) | 2.35 | 2.29(±0.17) |
11 | 0.50 | 25.8 | 24.0 | 127.6 | 79.6 | 2.40 | ||||
12 | 0.50 | 25.8 | 24.2 | 123.0 | 76.7 | 2.11 |
序号 | P/MPa | GSCHS/L?L-1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
实验值 | 均值(±浮动) | 实验值 | 均值(±浮动) | 实验值 | 均值(±浮动) | 实验值 | 均值(±浮动) | ||||||
1 | 1.23 | 13.2 | 12.6 | 12.7(±0.1) | 118.9 | 116.8(±3.1) | 73.9 | 72.6(±1.9) | 0.76 | 0.73(±0.05) | |||
2 | 1.23 | 13.2 | 12.7 | 113.7 | 70.7 | 0.68 | |||||||
3 | 1.23 | 13.2 | 12.7 | 117.7 | 73.2 | 0.74 | |||||||
4 | 1.37 | 26.0 | 25.1 | 25.1(±0.1) | 133.0 | 132.4(±3.1) | 82.7 | 82.4(±2.0) | 1.15 | 1.13(±0.12) | |||
5 | 1.37 | 26.0 | 25.2 | 129.3 | 80.4 | 1.01 | |||||||
6 | 1.37 | 26.0 | 25.1 | 135.0 | 84.0 | 1.24 | |||||||
7 | 1.64 | 50.9 | 49.6 | 49.6(±0.2) | 136.5 | 137.3(±3.4) | 84.9 | 85.4(±2.1) | 1.31 | 1.37(±0.21) | |||
8 | 1.64 | 50.9 | 49.4 | 140.7 | 87.5 | 1.58 | |||||||
9 | 1.64 | 50.9 | 49.8 | 134.7 | 83.8 | 1.22 | |||||||
10 | 2.21 | 103.3 | 102.0 | 102(±0.2) | 131.3 | 130.4(±3.5) | 81.7 | 81.1(±2.2) | 1.08 | 1.06(±0.12) | |||
11 | 2.21 | 103.3 | 102.2 | 126.9 | 78.9 | 0.94 | |||||||
12 | 2.21 | 103.3 | 101.8 | 133.1 | 82.8 | 1.15 |
序号 | P/MPa | GSCHS/L?L-1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
实验值 | 均值(±浮动) | 实验值 | 均值(±浮动) | 实验值 | 均值(±浮动) | 实验值 | 均值(±浮动) | ||||||
1 | 1.23 | 13.2 | 12.6 | 12.7(±0.1) | 118.9 | 116.8(±3.1) | 73.9 | 72.6(±1.9) | 0.76 | 0.73(±0.05) | |||
2 | 1.23 | 13.2 | 12.7 | 113.7 | 70.7 | 0.68 | |||||||
3 | 1.23 | 13.2 | 12.7 | 117.7 | 73.2 | 0.74 | |||||||
4 | 1.37 | 26.0 | 25.1 | 25.1(±0.1) | 133.0 | 132.4(±3.1) | 82.7 | 82.4(±2.0) | 1.15 | 1.13(±0.12) | |||
5 | 1.37 | 26.0 | 25.2 | 129.3 | 80.4 | 1.01 | |||||||
6 | 1.37 | 26.0 | 25.1 | 135.0 | 84.0 | 1.24 | |||||||
7 | 1.64 | 50.9 | 49.6 | 49.6(±0.2) | 136.5 | 137.3(±3.4) | 84.9 | 85.4(±2.1) | 1.31 | 1.37(±0.21) | |||
8 | 1.64 | 50.9 | 49.4 | 140.7 | 87.5 | 1.58 | |||||||
9 | 1.64 | 50.9 | 49.8 | 134.7 | 83.8 | 1.22 | |||||||
10 | 2.21 | 103.3 | 102.0 | 102(±0.2) | 131.3 | 130.4(±3.5) | 81.7 | 81.1(±2.2) | 1.08 | 1.06(±0.12) | |||
11 | 2.21 | 103.3 | 102.2 | 126.9 | 78.9 | 0.94 | |||||||
12 | 2.21 | 103.3 | 101.8 | 133.1 | 82.8 | 1.15 |
1 | SLOAN E D. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426: 353-363. |
2 | 代梦玲, 孙志高, 李娟, 等. 水合物储气促进技术研究进展[J]. 化工进展, 2020, 39(10): 3975-3986. |
DAI Mengling, SUN Zhigao, LI Juan, et al. Progress on promotion technology for gas storage in hydrates[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3975-3986. | |
3 | 薛倩, 王晓霖, 李遵照, 等. 水合物利用技术应用进展[J]. 化工进展, 2021, 40(2): 722-735. |
XUE Qian, WANG Xiaolin, LI Zunzhao, et al. Research progresses in hydrate based technologies and processes[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 722-735. | |
4 | 樊栓狮, 周静仁, 李璐伶, 等. 水合物法平衡级分离CO2/N2流程模拟分析[J]. 化工进展, 2020, 39(9): 3600-3607. |
FAN Shuanshi, ZHOU Jingren, LI Luling, et al. The simulation and analysis of CO2/N2 separation process by equilibrium stage hydrate-based gas separation method[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3600-3607. | |
5 | MOLOKITINA N S, NESTEROV A N, PODENKO L S, et al. Carbon dioxide hydrate formation with SDS: further insights into mechanism of gas hydrate growth in the presence of surfactant[J]. Fuel, 2019, 235: 1400-1411. |
6 | WANG X, ZHANG F, LIPINSKI W. Research progress and challenges in hydrate-based carbon dioxide capture applications[J]. Applied Energy, 2020, 269: 114928. |
7 | 邵伟强, 梁海峰, 张锡彦, 等. 水合物法提纯低浓度煤层气的研究进展[J]. 化工进展, 2021, 40(6): 3143-3150. |
SHAO Weiqiang, LIANG Haifeng, ZHANG Xiyan, et al. Research progress of purification of low-concentration coal-bed methane via hydrate method[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3143-3150. | |
8 | WANG Y, YANG B, LIU Z, et al. The hydrate-based gas separation of hydrogen and ethylene from fluid catalytic cracking dry gas in presence of poly(sodium 4-styrenesulfonate)[J]. Fuel, 2020, 275: 117895. |
9 | GATET P, DICHARRY C, MARION G, et al. Experimental determination of methane hydrate dissociation curve up to 55MPa by using a small amount of surfactant as hydrate promoter[J]. Chemical Engineering Science, 2005, 60: 5751-5758. |
10 | PAHLAVANZADEH H, KHANLARKHANI M, REZAEI S, et al. Experimental and modelling studies on the effects of nanofluids (SiO2, Al2O3, and CuO) and surfactants (SDS and CTAB) on CH4 and CO2 clathrate hydrates formation[J]. Fuel 2019, 253: 1392-1405. |
11 | ZHENG J, CHENG F, LI Y, et al. Progress and trends in hydrate based desalination (HBD) technology: a review[J]. Chinese Journal of Chemical Engineering, 2019, 27: 2037-2043. |
12 | DICHARRY C, DIAZ J, TORRE J P, et al. Influence of the carbon chain length of a sulfate-based surfactant on the formation of CO2, CH4 and CO2-CH4 gas hydrates[J]. Chemical Engineering Science, 2016, 152: 736-745. |
13 | ZHONG D L, LI Z, LU Y Y, et al. Evaluation of CO2 removal from a CO2 + CH4 gas mixture using gas hydrate formation in liquid water and THF solutions[J]. Applied Energy, 2015, 158: 133-141. |
14 | SONG G, LI Y, WANG W, et al. Experimental investigation on the microprocess of hydrate particle agglomeration using a high-speed camera[J]. Fuel, 2019, 237: 475-485. |
15 | SHI L, DING J, LIANG D. Enhanced CH4 storage in hydrates with the presence of sucrose stearate[J]. Energy, 2019, 180: 978-988. |
16 | 陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 北京: 化学工业出版社, 2020:10-181. |
CHEN G J, SUN C Y, MA Q L. Gas hydrate science and technology[M]. Beijing: Chemical Industry Press, 2020: 10-181. | |
17 | ZANG X, WAN L, HE Y, et al. CO2 removal from synthesized ternary gas mixtures used hydrate formation with sodium dodecyl sulfate (SDS) as additive[J]. Energy, 2020, 190: 116399-116409. |
18 | ANDO N, KUWABARA Y, MORI Y H. Surfactant effects on hydrate formation in an unstirred gas/liquid system: an experimental study using methane and micelle-forming surfactants[J]. Chemical engineering science, 2012, 73: 79-85. |
19 | SONG Y M, LIANG R Q, WANG F, et al. Enhanced methane hydrate formation in the highly dispersed carbon nanotubes-based nanofluid[J]. Fuel, 2021, 285: 119234. |
20 | BAVOH C, LAI B, OSEI H, et, al. A review on the role of amino acids in gas hydrate inhibition, CO2 capture and sequestration, and natural gas storage[J]. Journal of Natural Gas Science and Engineering, 2019, 64: 52-71. |
21 | WANG Y, WANG L, HU Z, et, al. The thermodynamic and kinetic effects of sodium lignin sulfonate on ethylene hydrate formation[J]. Energies 2021, 14: 3291. |
22 | TIAN E, HU C, QIN Y, et al. A study of poly(sodium 4-styrenesulfonate) as draw solute in forward osmosis[J]. Desalination, 2015, 360: 130-37. |
23 | YU C, CHEN L, SUN B. Experimental characterization of guest molecular occupancy in clathrate hydrate cages: a review[J]. Chinese Journal of Chemical Engineering, 2019, 27: 2189-2206. |
24 | CHEN G, GUO T. A new approach to gas hydrate modelling[J]. Chemical Engineering Journal, 1998, 71(2): 145-151. |
25 | CHEN G, GUO T. Thermodynamic modeling of hydrate formation based on new concepts[J]. Fluid Phase Equilibria, 1996, 122(1): 43-65. |
26 | WANG Y, DENG Y, GUO X, et al. Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation[J]. Energy, 2018, 150: 377-395. |
27 | XU Z, SUN Q, GAO J, et, al. Experiment and model investigation of D-sorbitol as a thermodynamic hydrate inhibitor for methane and carbon dioxide hydrates[J]. Journal of Natural Gas Science and Engineering, 2021, 90: 103927. |
28 | PATEL N C, TEJA A S. A new cubic equation of state for fluids and fluid mixtures[J]. Chemical Engineering Science, 1982, 37(3): 463-473. |
29 | ASADI F, EJTEMAEI M, BIRKETT G, et al. The link between the kinetics of gas hydrate formation and surface ion distribution in the low salt concentration regime[J]. Fuel, 2019, 240: 309-316. |
30 | HU Y, LEE B, SUM A. Universal correlation for gas hydrates suppression temperature of inhibited systems: Ⅰ. Single salts[J]. AIChE Journal, 2017, 63(11): 5111-5124. |
31 | JARRAHIANA A, NAKHAEE A. Hydrate-liquid-vapor equilibrium condition of N2 + CO2 + H2O system: measurement and modeling[J]. Fuel, 2019, 237: 769-774. |
32 | LIAO Z, GUO X, ZHAO Y, et al. Experimental and modeling study on phase equilibria of semiclathrate hydrates of tetra-n-butyl ammonium bromide + CH4, CO2, N2, or gas mixtures[J]. Industrial & Engineering Chemistry Research, 2013, 52(51): 18440-18446. |
33 | LIAO Z, GUO X, LI Q, et al. Experimental and modeling study on the phase equilibria for hydrates of gas mixtures in TBAB solution[J]. Chemical Engineering Science, 2015, 137: 18440-18446. |
34 | LI N, ZHANG C, MA Q, et al. Measurements and modeling of interfacial tension for (CO2 + n-alkyl benzene) binary mixtures[J]. The Journal of Supercritical Fluids, 2019, 154: 104625-104633. |
35 | LUO H, SUN C Y, HUANG Q, et al. Interfacial tension of ethylene and aqueous solution of sodium dodecyl sulfate (SDS) in or near hydrate formation region[J]. Journal of Colloid and Interface Science, 2006, 297: 266-270. |
36 | MANKO D, ZDZIENNICKA A, JANCZUK B, et al. Surface and volumetric properties of n-octyl-β-d-glucopyranoside and rhamnolipid mixture[J]. Journal of Molecular Liquids, 2016, 219: 801-809. |
37 | CHENG L, LIAO K, LI Z, et al. The invalidation mechanism of kinetic hydrate inhibitors under high subcooling conditions[J]. Chemical Engineering Science, 2019, 207: 305-316. |
38 | WANG Y, DU M, GUO X, et al. Experiments and simulations for continuous recovery of methane from coal seam gas (CSG) utilizing hydrate formation[J]. Energy, 2017, 129: 28-41. |
39 | JIANG L, XU N, LIU Q, et al. Review of morphology studies on gas hydrate formation for hydrate-based technology[J]. Crystal Growth & Design, 2020, 20(12): 8148-8161. |
[1] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[2] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[3] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[4] | WANG Peng, ZHANG Yang, FAN Bingqiang, HE Dengbo, SHEN Changshuai, ZHANG Hedong, ZHENG Shili, ZOU Xing. Process and kinetics of hydrochloric acid leaching of high-carbon ferrochromium [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 510-517. |
[5] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[6] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[7] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[8] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[9] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[10] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[11] | WU Zhenghao, ZHOU Tianhang, LAN Xingying, XU Chunming. AI-driven innovative design of chemicals in practice and perspective [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. |
[12] | ZHANG Zhichen, ZHU Yunfeng, CHENG Weishu, MA Shoutao, JIANG Jie, SUN Bing, ZHOU Zichen, XU Wei. Research advances on runaway decomposition of high pressure polyethylene: Reaction mechanism, initiation system and model [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3979-3989. |
[13] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[14] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[15] | YANG Xuzhao, LI Qing, YUAN Kangkang, ZHANG Yingying, HAN Jingli, WU Shide. Thermodynamic properties of Gemini ionic liquid based deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3123-3129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |