Chemical Industry and Engineering Progress

   

A critical review of bioelectrochemical system in the degradation of Hydrophobic Emerging Contaminants

  

  • Received:2021-01-16 Revised:2021-03-01 Online:2021-03-08

生物电化学技术降解疏水性新兴污染物的研究进展

张钤,崔敏华,陈蕾,吴平,刘和   

  1. 江南大学
  • 通讯作者: 崔敏华
  • 基金资助:
    国家自然科学基金;江苏省自然科学基金;中国博士后科学基金

Abstract: The transformation and degradation of hydrophobic emerging contaminants (HECs) now became research hot spots due to the characteristics of widespread distribution, persistence, and refractory of HECs. Bioelectrochemical system (BES) is a flourishing technology for the remediation of various contaminants and has been proven to efficiently transform and degradation of HECs. In this work, the effect of BES operational factors on HECs' removal performance was analyzed, the effectiveness of BES technology in treating various HECs was evaluated, and the feasibility and superiority of integrating BES into traditional treating technologies, such as anaerobic digestion, wetlands, photocatalysis, etc., were discussed as well. Besides, the prospective development of functional electrode materials, the mechanism of HECs' transformation and degradation, and the engineering applications of BES technology were proposed. This review is excepted to provide theoretical and technical supports for future research and promote the BES technology closer to the practical application.

Key words: hydrophobic emerging contaminants, bioelectrochemical system, degradation, remediation, oxidation, reduction, coupling process

摘要: 疏水性新兴污染物(Hydrophobic Emerging Contaminants,HECs)具有环境危害大、分布范围广和处理难度高等特点,利用生物电化学系统(Bioelectrochemical system,BES)实现HECs的降解和脱毒是当前研究热点。本文综述了BES降解转化HECs的研究现状,分析了影响BES去除HECs效果的关键因素,着重介绍了BES降解转化不同类型HECs(包括药物类、个人护理品类、卤代烃类和抗生素及抗性基因类)的效能,然后回顾了BES与其他技术(传统厌氧工艺、芬顿、复合湿地及光催化等)结合协同降解HECs的最新进展,最后在功能电极材料设计研发、HECs降解去除与安全转化的理论研究及工程化应用等方面进行了总结和展望,以期对该领域的研究人员提供一定的理论参考和技术支持,从而推进生物电化学技术在疏水性新兴污染物降解领域的应用和发展。

关键词: 疏水性新兴污染物, 生物电化学系统, 降解, 修复, 氧化, 还原, 耦合工艺

CLC Number: 

Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.

Powered by Beijing Magtech Co. Ltd