Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (1): 6-20.DOI: 10.16085/j.issn.1000-6613.2020-0822
• Invited review • Previous Articles Next Articles
Received:
2020-05-14
Online:
2021-01-12
Published:
2021-01-05
作者简介:
杜泽学(1964—),工学博士,教授级高级工程师,中国石化新能源研究所副所长,研究方向为可再生能源技术。E-mail:CLC Number:
Zexue DU. Application advances of manufacturing technology for key materials of vehicle fuel cell stack[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 6-20.
杜泽学. 车用燃料电池关键材料技术研发应用进展[J]. 化工进展, 2021, 40(1): 6-20.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0822
整车 | 电堆及运行配套 | 燃料电池 | |||||
---|---|---|---|---|---|---|---|
项目 | 成本 /% | 项目 | 成本 /% | 项目 | 成本 /% | ||
电堆 | 40.9 | 燃料电池 | 60.8 | 催化剂 | 44.9 | ||
储氢瓶 | 13.8 | 氢气供给及安全监测 | 4.5 | 质子交换膜 | 10.3 | ||
电机 | 8.6 | 空气供给 | 15.3 | 扩散层 | 4.8 | ||
蓄电池 | 3.7 | 热管理系统 | 7.8 | 双极板 | 27.8 | ||
制动系统 | 2 | 加湿及水管理系统 | 3.1 | 膜电极支撑板 | 4.6 | ||
变速器 | 1 | 控制系统 | 3.6 | 其他 | 7.6 | ||
车架及其他 | 30 | 其他 | 4.9 |
整车 | 电堆及运行配套 | 燃料电池 | |||||
---|---|---|---|---|---|---|---|
项目 | 成本 /% | 项目 | 成本 /% | 项目 | 成本 /% | ||
电堆 | 40.9 | 燃料电池 | 60.8 | 催化剂 | 44.9 | ||
储氢瓶 | 13.8 | 氢气供给及安全监测 | 4.5 | 质子交换膜 | 10.3 | ||
电机 | 8.6 | 空气供给 | 15.3 | 扩散层 | 4.8 | ||
蓄电池 | 3.7 | 热管理系统 | 7.8 | 双极板 | 27.8 | ||
制动系统 | 2 | 加湿及水管理系统 | 3.1 | 膜电极支撑板 | 4.6 | ||
变速器 | 1 | 控制系统 | 3.6 | 其他 | 7.6 | ||
车架及其他 | 30 | 其他 | 4.9 |
1 | FURAT D, MARTIN A, SHAFIULLAH G M. Hydrogen production for energy: an overview[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3847-3869. |
2 | 邵志刚, 衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊, 2019, 34(4): 469-477. |
SHAO Zhigang, YI Baolian. Developing trend and present status of hydrogen energy and fuel cell development[J].Bulletin of Chinese Academy of Sciences, 2019, 34(4): 469-477. | |
3 | 王赓, 郑津洋, 蒋利军, 等. 中国氢能发展的思考[J]. 科技导报, 2017, 35(22): 105-110. |
WANG Geng, ZHENG Jinyang, JIANG Lijun, et al. The development of hydrogen energy in China[J]. Sciences & Technology Review, 2017, 35(22): 105-110. | |
4 | TIAGO S, FELIPE L, MARIO E S M, et al. Production, storage, fuel stations of hydrogen and its utilization in automotive applications— A review[J]. International Journal of Hydrogen Energy, 2017, 42(39): 24597-24611. |
5 | 周晖雨, 范芷萱. 燃料电池发展史: 从阿波罗登月到丰田Mirai[J]. 能源, 2019(7): 94-96. |
ZHOU Yuhui, FAN Zhixuan. History of fuel cell: from Appollo to Mirai of Toyota[J]. Energy, 2019(7): 94-96. | |
6 | 刘宗巍, 史天泽, 郝瀚, 等. 中国燃料电池汽车发展问题研究[J]. 汽车技术, 2018(1): 1-9. |
LIU Zongwei, SHI Tianze, HAO Han, et al. Research on main problems associated with development of fuel cell vehicle in China[J]. Automobile Technology, 2018(1): 1-9. | |
7 | BRUNO G P, SHYAM S K, IAIN S. Current status of automotive fuel cells for sustainable transport[J]. Current Opinion in Electrochemistry, 2019, 16: 90-95. |
8 | NANCY L G, DIMITRIOS C P, JOSEPH M S. Hydrogen and fuel cell technology: progress, challenges, and future directions[J]. Energy Procedia, 2012(28): 2-11. |
9 | 北极星氢能网. 销量增长近8成!2019燃料电池汽车销量2737辆[EB/OL]. , 2020-01-14. |
QN. BJX.com.cn. Sales increase nearly80%. The sales of fuel cell vehicles is 2737 in 2019[EB/OL]. , 2020-01-14. | |
10 | 王薛超, 金茂菁. 燃料电池汽车国内外发展现状及对策建议[J]. 科技中国, 2019(5): 6-8. |
WANG Xuechao, JIN Maojing. Review of the development of fuel cell vehicles at home and abroad[J]. Chinese Science and Technology, 2019(5): 6-8. | |
11 | 万钢. 如何解决燃料电池汽车发展的七大问题[J]. 汽车纵横, 2018(8): 20-23. |
WAN Gang. How to solve the seven problems in the development of fuel cell vehicles[J]. Auto Review, 2018(8): 20-23. | |
12 | 王诚, 王树博, 张剑波, 等. 车用质子交换膜燃料电池材料部件[J]. 化学进展, 2015, 27(2/3): 310-320. |
WANG Cheng, WANG Shubo, ZHANG Jianbo, et al. The key materials and components for proton exchange membrane fuel cell[J]. Progress in Chemistry, 2015, 27(2/3): 310-320. | |
13 | 侯明, 邵志刚, 衣宝廉. 车用燃料电池电堆比功率提升的技术途径探讨[J]. 中国工程科学, 2019, 21(3): 84-91. |
HOU Ming, SHAO Zhigang, YI Baolian. Technological approaches to increasing specific power of vehicular fuel cell stacks[J]. Strategic Study of CAE, 2019, 21(3): 84-91. | |
14 | 李存璞, 陈嘉佳, 李莉, 等. 燃料电池关键材料与进展[J]. 科技导报, 2017, 35(8): 19-25. |
LI Cunpu, CHEN Jiajia, LI Li, et al. Key materials and progress of fuel cells[J]. Sciences & Technology Review, 2017, 35(8): 19-25. | |
15 | 侯明, 邵志刚, 俞红梅, 等. 2019年氢燃料电池研发热点回眸[J]. 科技导报, 2020, 38(1): 137-150. |
HOU Ming, SHAO Zhigang, YU Hongmei, et al. Review of hot topics on hydrogen fuel cell in 2019[J]. Sciences & Technology Review, 2020, 38(1): 137-150. | |
16 | 姜保成, 姜澜. 负载型铂族金属催化剂研究进展[J]. 贵金属, 2018, 39(S1): 126-130. |
JIANG Baocheng, JIANG Lan. Research progress of supported platinum group metal catalysts[J]. Precious Metals, 2018, 39(S1): 126-130. | |
17 | 俞红梅, 衣宝廉. 车用燃料电池现状与电催化[J]. 中国科学: 化学, 2012, 42(4): 480- 494. |
YU Hongmei, YI Baolian. Current status of vehicle fuel cells and electrocatalysis[J]. Scientia Sinica Chimica, 2012, 42(4): 480-494. | |
18 | 李静, 冯欣, 魏子栋. 铂基燃料电池氧还原反应催化剂研究进展[J]. 电化学, 2018, 24(6): 589-601. |
LI Jing, FENG Xin, WEI Zidong. Recent progress in Pt-based catalysts for oxygen reduction reaction[J]. Journal of Electrochemistry, 2018, 24(6): 589-601. | |
19 | EHTESHAMI S M M, CHAN S H.A review of electrocatalysts with enhanced CO tolerance and stability for polymer electrolyte membarane fuel cells[J]. Electrochimica Acta, 2013, 93:334-345. |
20 | DOE. DOE hydrogen and fuel cells program record: fuel cell system cost 2015 [R]. |
Department of Energy U. S., 2015. | |
21 | MARTIN P, MONIKA D, KAREL B. Review of the experimental study and prediction of Pt-based catalyst degradation during PEM fuel cell operation[J]. Current Opinion in Electrochemistry, 2020, 20: 20-27. |
22 | KOTARO S, KURIAN A K, RADOSLAV R A. Designing high performance Pt monolayer core-shell electrocatalysts for fuel cells[J]. Current Opinion in Electrochemistry, 2020, 21(6): 368-375. |
23 | DOE, The Fuel Cell Technical Team.Fuel cell technical team roadmap [EB/OL]. . |
24 | CHARLES S JÜRGEN S. Recent advances in fuel cell technology at Ballard[J]. Journal of Power Sources, 2008, 176(2): 468-476. |
25 | ZHANG J, SASAKI K, SUTTER E, et al. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters[J]. Science, 2007, 315: 220-222. |
26 | YANG S, TAK Y J, KIM J, et al. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction[J]. ACS Catalysis, 2017, 7(2) : 1301-1307. |
27 | LUJIN P, SEBASTIAN O, FABIO D, et al. Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells[J]. Current Opinion in Electrochemistry, 2019, 18(12): 61-71. |
28 | HUBERT A G, SHYAM S K, BHASKAR S, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 9-35. |
29 | 朱红, 骆明川, 蔡业政, 等. 核壳结构催化剂应用于质子交换膜燃料电池氧还原的研究进展[J]. 物理化学学报, 2016, 32 (10): 2462-2474. |
ZHU Hong, LUO Mingchuan, CAI Yezheng, et al. Core-shell structured electrocatalysts for the cathodic oxygen reduction reaction in proton exchange membrane fuel cells[J]. Acta Phys-Chim Sin., 2016, 32 (10): 2462-2474. | |
30 | 魏子栋. 质子交换膜燃料电池催化剂性能增强方法研究进展[J]. 化工进展, 2016, 35(9): 2629-2639. |
WEI Zidong. Advances of the catalytic performance enhancement for proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2629-2639. | |
31 | SHUAIBA S, KEE S L, WAI Y W, et al. Carbon and non-carbon support materials for platinum-based catalysts in fuel cells[J]. International Journal of Hydrogen Energy, 2018, 43(16): 7823-7854. |
32 | MARYAM K, ZHANG J, LUO Y, et al. Recent developments in electrocatalysts and future prospects for oxygen reduction reaction in polymer electrolyte membrane fuel cells[J]. Journal of Energy Chemistry, 2018, 27(4): 1124-1139. |
33 | 张镇, 吴辉. 国内外质子交换膜燃料电池关键材料的性能和成本分析[J]. 电池工业, 2019, 23(6):305-310. |
ZHANG Zhen, WU Hui. A literature review on performance and cost analysis of key materials for PEMFC[J]. Chinese Battery Industry, 2019, 23(6): 305-310. | |
34 | 马爱增. 中国催化重整技术进展[J]. 中国科学: 化学, 2014, 44(1): 25-39. |
MA Aizeng. Development and commercial application of naphtha catalytic reforming technology in China[J]. Scientia Sinica Chimica, 2014, 44(1): 25-39. | |
35 | ADAMS D P. Reactive multilayers fabricated by vapor deposition: a critical review[J]. Thin Solid Films, 2015, 576: 98-128. |
36 | ALEXEEVA O K, FATEEV V N. Application of the magnetron sputtering for nanostructured electrocatalysts synthesis[J]. International Journal of Hydrogen Energy, 2016, 41(5): 3373-3386. |
37 | 李丽, 金环年, 胡云剑. 加氢处理催化剂制备技术研究进展[J]. 化工进展, 2013, 32(7): 1564-1569. |
LI Li, JIN Huannian, HU Yunjian. Research progress in preparation techniques of hydrotreating catalysts[J]. Chemical Industry and Engineering Progress, 2013, 32(7): 1564-1569. | |
38 | 索掌怀, 徐秀峰, 马华宪, 等. 制备方法对Ni/MgO/Al2O3 在甲烷与二氧化碳重整反应中催化性能的影响[J]. 催化学报, 2009, 21(5): 411-414. |
SUO Zhanghuai, XU Xiufeng, MA Huaxian, et al. Influence of preparation methods on catalytic performance of Ni/MgO/Al2O3 in CO2 reforming of CH4[J]. Chinese Journal of Catalysis, 2009, 21(5):411-414. | |
39 | WANG Y J, FANG B Z, LI H, et al. Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells[J]. Progress in Materials Science, 2016, 82: 445-498. |
40 | PAN L J, SEBASTIAN O, FABIO D, et al. Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells[J]. Current Opinion in Electrochemistry, 2019, 18: 61-71. |
41 | STAMENKOVIC V, MUN B S, MAYRHOFER K J J, et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure[J]. Angewandte Chemie, 2006, 118(18): 2963-2967. |
42 | STAMENKOVIC V R, MARKOVIC N M. Oxygen reduction on platinum bimetallic alloy catalysts[M]// Handbook of Fuel Cells, John Wiley & Sons, Inc., 2010. . |
43 | SHAO M, SASAKI K, MARINKOVIC N S, et al. Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co-Pd core-shell nanoparticle supports[J]. Electrochemistry Communications, 2007, 9(12): 2848-2853. |
44 | SRIVASTAVA R, MANI P, HAHN N, et al. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles[J]. Angewandte Chemie International Edition, 2007, 46(47): 8988-8991. |
45 | VANDAN H E, BEKKUM H V. Preparation of platinum on activated carbon [J]. J. Catalysis, 1991, 131: 335-349. |
46 | PETROW H G, ALLEN R J. Catalytic platinum metal particles on a subs-trate and method of preparing the catalyst: US3992331[P]. 1976-11-16. |
47 | YOSHITAKE T, SHIMAKAWA Y, KUROSHIMA S, et al. Interconnection of nanostructures using carbon nanotubes[J]. Physica B: Condensed Matter, 2002, 323(1/2/3/4): 124-126. |
48 | WANG X, HSING I M. Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells[J]. Electrochimica Acta, 2002, 47(18):2981-2987. |
49 | LIU Z L, LING X Y, SU X D, et al. Preparation and characterization of Pt/C and PtRu/C electrocatalysts for direct ethanol fuel cells[J]. J Power Sources, 2005, 149(1): 1-71. |
50 | LIU Z L, GUO B, HONG L, et al. Microwave heated polyol synthesis of carbon-supported Pt-Sn nanoparticles for methanol electrooxidation [J]. Electrochemistry Communications, 2006, 8(1): 83-90. |
51 | SHIMAZAKI Y, KOBAYASHI Y, YOSHIO Y, et al. Preparation and characterization of aqueous colloids of Pt-Ru nanoparticles[J]. J. Colloid and Interface Science, 2005, 292(1): 122-126. |
52 | LIAO S J, HOLMES K A, TSAPRAILIS H, et al. High performance Pt-Ru-Ir catalysts supported on carbon nanotubes for the anodic oxidation of methanol[J]. J. Am. Chem. Soc., 2006, 128 (11): 3504-3505. |
53 | KIM T, TAKAHASHI M, NAGAI M, et al. Preparation and characterization of carbon supported Pt and Pt-Ru alloy catalysts reduced by alcohol for polymer electrolyte fuel cell [J]. Electrochimica Acta, 2004, 50(2/3): 817-821. |
54 | 廖世军, 李映伟. 有机溶胶法制备高分散纳米催化剂的研究进展[J]. 石油化工, 2009, 38(5): 469-475. |
LIAO Shijun, LI Yingwei. Advance in preparation of highly dispersed nanocatalyst by organic colloid method[J]. Petrochemical Technology, 2009, 38(5): 469-475. | |
55 | BONNEMANN H, BRINKMANN R, BRITZ P, et al. Nanoscopic Pt-bimetal colloids as precursors for PEM fuel cell catalysts[J]. J. New Materials for Electrochemical Systems, 2000, 3(3): 199-206. |
56 | PAULUS U A, ENDRUSCHATU, FELDMEYER G J, et al. New Pt-Ru alloy colloids as precursors for fuel cell catalysts[J]. J. Catal., 2000, 195(2): 383-393. |
57 | FIEVET F, LAGIER J P, BLIN B., et al.Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles[J]. Solid State Ionics, 1989, 32/33(2/3): 198-205. |
58 | SUN S, MURRAY C B, WELLER D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J]. Science, 2000, 287: 1989-1992. |
59 | SANTIAGO E I, VARANDA L C, VILLULLAS H M. Carbon supported Pt-Co catalysts prepared by a modified polyol process ascathodes for PEM fuel cells[J]. J. Phys. Chem., 2007, 111: 3146-3151. |
60 | LIAO Shijun, HOLMES K, TSAPRAILIS H, et al. High performance Pt-Ru-Ir catalysts supported on carbon nanotubes for the anodic oxidation of methanol[J]. J. Am. Chem. Soc., 2006, 128(11): 3504-3505. |
61 | 侯长军, 兰作平, 霍丹群. 微乳法制备超细级纳米材料的研究现状与进展[J]. 材料导报, 2007, 21(11): 14-16. |
HOU Changjun, LAN Zuoping, HUO Danqun. Progress in study on preparation of ultrafine namomaterial by microemulsion method[J]. Sciences & Technology Review, 2007, 21(11): 14-16. | |
62 | 唐振艳, 赵云昆, 张爱敏, 等. 液相化学法制备贵金属纳米颗粒的研究进展[J]. 材料导报, 2008, 22(12): 66-70. |
TANG Zhenyan, ZHAO Yunkun, ZHANG Aimin, et al. Research progress in precious metal nanoparticles prepared by chemical liquid-phase methods[J]. Sciences & Technology Review, 2008, 22(12): 66-70. | |
63 | 杨思源, 戴伟, 傅吉全, 等. 微乳液法制备纳米催化剂及其在加氢反应中应用的研究进展[J]. 石油化工, 2012, 41(4): 471-476. |
YANG Siyuan, DAI Wei, FU Jiquan, et al. Reseach progress in preparation of ultrafine namocatalysts by microemulsion method and their application to hydrogenation[J]. Petrochemical Technology, 2012, 41(4): 471-476. | |
64 | CHEN D H, YEH J J, HUANG T. Sythesis of platinum ultrafine particles in AOT reverse micelles[J]. J . Colloid and Interface Science, 1999, 215(1): 159-166. |
65 | ESCUDERO M J, HONTANON E, SCHWARTZ S, et al. Development and performance characterisation of new electrocatalysts for PEMFC [J] . J. Power Sources, 2002, 106(1/2): 206-214. |
66 | MITSUHIRO I, HIROSHI S, TOMOHITO K, et al. Preparation and physical and electrochemical properties of carbon-supported Pt-Ru (Pt-Ru/C) samples using the polygonal barrel-sputtering method[J]. The Journal of Physical Chemistry C, 2008, 1129(5): 1479-1492. |
67 | RODNEY L B, AHMET K, KENNETH C N, et al. Recent developments in catalyst-related PEM fuel cell durability[J]. Current Opinion in Electrochemistry, 2020, 21: 192-200. |
68 | 王诚, 王树博, 张剑波. 车用燃料电池耐久性研究[J]. 化学进展, 2015, 27(4): 424- 435. |
WANG Cheng, WANG Shubo, ZHANG Jianbo. The durability research on the proton exchange membrane fuel cell for automobile application[J]. Progress in Chemistry, 2015, 27(4): 424- 435. | |
69 | 何大平, 木士春. 质子交换膜燃料电池铂电催化剂的稳定策略[J]. 电化学, 2018, 24(6): 655-663. |
HE Daping, MU Shichun. Stabilization strategies of Pt catalysts for proton exchange membrane fuel cells[J]. Journal of Electrochemistry, 2018, 24(6): 655-663. | |
70 | KOU R, SHAO Y Y, MEI D H, et al.Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points[J]. J. Am. Chem. Soc., 2011, 133: 2541-2547. |
71 | WILSON M S, GARZON F H, SICKAFUS K E, et al. Surface area loss of supported platinum in polymer electrolyte fuel cells[J]. J. Electrochem Soc., 1993, 140: 2872-2877. |
72 | FERREIRA P J, LA G J, SHAO-HORN Y, et al. Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells[J]. J. Electrochem. Soc., 2005, 152: A2256-A2271. |
73 | BORUP R, MEYERS J, PIVOVAR B, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chem. Rev., 2007, 107: 3904-3951. |
74 | TANG L, HAN B, PERSSON K, et al. Electrochemical stability of nanometer-scale Pt particles in acidic environments[J]. J. Am. Chem. Soc., 2010, 132: 596-600. |
75 | TADA T. High dispersion catalysts including novel carbon supports[M]// Handbook of fuel cells-fundamentals, technology and applications. VIELSTICH W, LAMM HGA, Eds. New York: John Wiley & Sons, 2003: 481-488. |
76 | STEVENS D A, HICKS M T, HAUGEN G M, et al. Ex situ and in situ stability studies of PEMFC catalysts[J]. J. Electrochem. Soc., 2005, 152: 2309-2315. |
77 | SHAO Y, YIN G, GAO Y.Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell[J]. J. Power Sources, 2007, 171: 558-566. |
78 | JAE H P, SUN-MI H, GU-GON P, et al. Variations in performance-degradation behavior of Pt/CNF and Pt/C MEAs for the same degree of carbon corrosion[J]. Electrochimica Acta, 2018, 260: 674-683. |
79 | PAULUS U A, SCHMIDT T J, GASTEIGER H A, et al. Oxygen reduction on a high-surface area Pt/vulcan carbon catalyst: a thin-film rotating ring-disk electrode study[J]. J. Electroanal. Chem., 2001, 495: 134-145. |
80 | 罗璇, 侯中军, 明平文, 等. 石墨化碳载体对Pt/C质子交换膜燃料电池催化剂稳定性的影响[J]. 催化学报, 2008, 29(4): 330-334. |
LUO Xuan, HOU Zhongjun, MING Pingwen, et al. Effect of graphitic carbon on stability of Pt/C catalysts for proton exchange membrane fuel cells[J]. Chinese Journal of Catalysis, 2008, 29(4): 330-334. | |
81 | STEVENS D A, DAHN J R. Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells [J]. Carbon, 2005, 43: 179-188. |
82 | HE D P, CHENG K, PENG T, et al. Bifunctional effect of reduced graphene oxides to support active metal nanoparticles for oxygen reduction reaction and stability [J]. Journal of Materials Chemistry, 2012, 22(39): 21298-21304. |
83 | LV H F, WU P, WAN W, et al. Electrochemical durability of heat-treated carbon nanospheres as catalyst supports for proton exchange membrane fuel cells[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(9): 7027-7031. |
84 | HE D P, JIANG Y L, PAN M, et al. Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability[J]. Applied Catalysis B: Environmental, 2013, 132: 379-388. |
85 | HE D P, RONG Y Y, KOU Z K, et al. Intrinsically microporous polymer slows down fuel cell catalyst corrosion[J]. Electrochemistry Communication, 2015, 59: 72-76. |
86 | HE D P, RONG Y Y, CARTA M, et al. Fuel cell anode catalyst performance can be stabilized with a molecularly rigid film of polymers of intrinsic microporosity (PIM)[J]. RSC Advances, 2016, 6(11): 9315-9319. |
87 | CHEN S G, WEI Z D, QI X Q, et al. Nanostructured poly-aniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity[J]. Journal of the American Chemical Society, 2012, 134(32): 13252-13255. |
88 | YE B, CHENG K, LI W Q, et al. Polyaniline and perfluoro-sulfonic acid co-stabilized metal catalysts for oxygen reduction reaction[J]. Langmuir, 2017, 33(22): 5353-5361. |
89 | TARASEVICH M R, BOGDANOVSKAY V A, LOUBNIN E N, et al. Comparative study of the corrosion behavior of platinum-based nanosized cathodic catalysts for fuel cells [J]. Protection of Metals, 2007, 43(7): 689-693. |
90 | YU P, PEMBERTON M, PLASSE P. PtCo/C cathode catalyst for improved durability in PEMFCs[J]. J. Power Sources, 2005, 144(1): 11-20. |
91 | SEO A, LEE J, HAN K, et al. Performance and stability of Pt-based ternary alloy catalysts for PEMFC [J]. Electrochim Acta, 2006, 52(4): 1603-1611. |
92 | WEI Z D, YIN F, LI L L, et al. study of Pt/C and Pt-fe/C catalysts in the light of quantum chemistry[J]. J. Electroanal. Chem., 2003, 541(1): 185-191. |
93 | YOSHIDA T, KOJIMA K. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society[J]. The Electrochemical Society Interface, 2015, 24: 45-49. |
94 | PAULUS U A, WOKAUN A, SCHERER G G, et al. Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts[J]. Journal of Physical Chemistry B, 2002, 106(16): 4181-4191. |
95 | GASTEIGER H A, KOCHA S S, SOMPALLI B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 9-35. |
96 | 曹龙生, 蒋尚峰, 秦晓平, 等. 单分散的超小PtCu合金的制备及其氧还原电催化性能[J]. 中国科学: 化学, 2017, 47(5): 683-691. |
CAO Longsheng, JIANG Shangfeng, QIN Xiaoping, et al. Preparation of monodispersed ultra-small PtCu alloy with remarkable electrocatalytic performance[J]. Scientia Sinica Chimica, 2017, 47(5): 683-691. | |
97 | 陈丹, 舒婷, 廖世军. 核壳结构低铂催化剂: 设计, 制备及核的组成及结构的影响[J]. 化工进展, 2013, 32(5): 1053-1059. |
CHEN Dan, SHU Ting, LIAO Shijun. Catalyst with core-shell structure low platium loading: a review on their design, preparation and the effect of core shell structure and composition on catalyst peformance[J]. Chemical Industry and Engineering Progress, 2013, 32(5): 1053-1059. | |
98 | KOU Z K, CHENG K, WU H, et al. Observable electrochemical oxidation of carbon promoted by platinum nanoparticles[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 3940-3947. |
99 | CHENG K, KOU Z K, ZHANG J, et al. Ultrathin carbon layer stabilized metal catalysts towards oxygen reduction[J]. Journal of Materials Chemistry A, 2015, 3(26): 14007-14014. |
100 | EASTWOOD B J, CHRISTENSEN P A, ARMSTRONG R D, et al. Electrochemical oxidation of a carbon black loaded polymer electrode in aqueous electrolytes[J]. J. Solid State Electrochem., 1999, 3: 179-186. |
101 | HE C Z, DESAI S, BROWN G, et al. PEM fuel cell catalysts: Cost, performance, and durability [J]. Electrochemical Society Interface, 2005, 14: 41-45. |
102 | LEE K, ZHANG J J, WANG H J, et al. Progress in the synthesis of carbon nanotube and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis [J]. J. Appl. Electrochem., 2006, 36: 507-522. |
103 | SHAO Y Y, YIN G P, ZHANG J, et al. Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution [J]. Electrochim Acta, 2006, 51: 5853-5857. |
104 | LV H F, CHENG N C, MU S C, et al. Heat-treated multiwalled carbon nanotubes as durable supports for PEM fuel cell catalysts[J]. Electrochimica Acta, 2011, 58(5): 736-742. |
105 | 高工产研氢电研究所[EN/OL]. https://mp.weixin.qq.com/s/lW9sJrzVQ86bon5Y1EnqZA, 2020-04-22. |
[EN/OL]. https://mp.weixin.qq.com/s/lW9sJrzVQ86bon5Y1EnqZA, 2020-04-22. | |
106 | 薛虎, 董海刚, 赵家春. 从失效汽车尾气催化剂中回收铂族金属研究进展[J]. 贵金属, 2019, 40(3): 76-83. |
XUE Hu, DONG Haigang, ZHAO Jiachun. Research progress in recovery of platinum group metals from spent automotive exhaust catalystsg[J]. Precious Metals, 2019, 40(3): 76-83. | |
107 | 衣宝廉, 俞红梅. 质子交换膜燃料电池关键材料的现状与展望[J]. 电源技术, 2003, 27(5): 175-179. |
YI Baolian, YU Hongmei. State of art and prospect of key materials for proton exchange membrane fuel cell[J]. Chinese Journal of Power Sources, 2003, 27(5): 175-179. | |
108 | MICHAEL A Y, MATTHEW J L, STEVEN J H. New directions in perfluoroalkyl sulfonic acid based proton exchange membranes[J]. Current Opinion in Electrochemistry, 2019, 18: 90-98. |
109 | SURYA S, MONICA P, MARIO C, et al. Physical and chemical modification routes leading to improved mechanical properties of perfluorosulfonic acid membranes for PEM fuel cells[J]. Journal of Power Sources, 2013, 233: 216-230. |
110 | ZHANG L W, CHAE S R, HENDREN Z, et al. Recent advances in proton exchange membranes for fuel cell applications[J]. Chemical Engineering Journal, 2012, 204-206: 87-97. |
111 | GRUBB W T, NIEDRACH L W. Batteries with solid ion exchange membrane electrolytes II.Low-temperature hydroge-oxygen fuel cells[J]. Journal of the Electrochemical Society, 1960, 107(2): 131-135. |
112 | WALTHER G G. CF=CFCFCFSOF and derivatives and polymers thereof: US3718627[P]. 1973. |
113 | CUI Z L, ENRICO D, YOUNG M L. Recent progress in fluoropolymers for membranes[J]. Progress in Polymer Science, 2014, 39(1): 164-198. |
114 | 张永明, 唐军柯, 袁望章. 燃料电池全氟磺酸质子交换膜研究进展[J]. 膜科学与技术, 2011, 31(3): 76-85. |
ZHANG Yongming, TANG Junke, YAUN Wangzhang. Progress of fuel cell perfluorosulfonic acid membrane[J]. Membrane Science and Technology, 2011, 31(3): 76-85. | |
115 | CURTIN D E, LOUSENBERG R D, HENRY T J, et al. Advanced materials for improved PEMFC performance and life[J]. J. Power Sources, 2004, 131: 141-148. |
116 | 高工锂电网[EN/OL]. https://www.gg-lb.com/asdisp-65b095fb-36997.html, 2019-04-15. |
[EN/OL]. https://www.gg-lb.com/asdisp-65b095fb-36997.html, 2019-04-15. | |
117 | 赵经纬, 蔡园满, 易秘, 等. 燃料电池用质子交换膜产业分析[J]. 江西化工, 2019(6): 322-326. |
ZHAO Jingwei, CAI Yuanman, YI Mi, et al. Industry analysis of proton exchange membrane for fuel cell[J]. Jiangxi Chemical Industry, 2019(6): 322-326. | |
118 | RYSZARD W, PETER N P, JUN W P. New developments in proton conducting membranes for fuel cells[J]. Current Opinion in Chemical Engineering, 2014, 4: 71-78. |
119 | BAHAR B, HOBSON A R, KOLDE J A, et al. Ultra-thin integral composite membrane: US 5547551[P]. 1996-08-20. |
120 | 高工锂电网[EN/OL]. https://www.gg-lb.com/asdisp2--36368-.html, 2019-02-26. |
[EN/OL]. https://www.gg-lb.com/asdisp2--36368-. html, 2019-02-26. | |
121 | 李丹, 宋天丹, 康敬欣. 燃料电池用质子交换膜的研究进展[J]. 电源技术, 2016, 40(10): 2084-2087. |
LI Dan, SONG Tiandan, KANG Jingxin. Development of proton exchange membrane for fuel cell[J]. Chinese Journal of Power Sources, 2016, 40(10): 2084-2087. | |
122 | CINDRELLA L, KANNAN A M, LIN J F, et al. Gas diffusion layer for proton exchange membrane fuel cells—A review[J]. Journal of Power Sources, 2009, 194(1): 146-160. |
123 | ARVAY A, YLI-RANTALA E, LIU C H, et al. Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells—A review[J]. Journal of Power Sources, 2012, 213: 317-337. |
124 | TANUMA T. Innovative hydrophilic microporous layers for cathode gas diffusion media[J]. Journal of The Electrochemical Society, 2010, 157(12): B1809-B1813. |
125 | CHUN J H, JO D H, KIM S G, et al. Development of a porosity-graded micro porous layer using thermal expandable graphite for proton exchange membrane fuel cells[J]. Renewable Energy, 2013, 58: 28-33. |
126 | REZA O, BAHMAN S. Gas diffusion layer modifications and treatments for improving the performance of proton exchange membrane fuel cells and electrolysers: a review[J]. International Journal of Hydrogen Energy, 2017, 42(47): 28515-28536. |
127 | PARK H.Effect of the hydrophilic and hydrophobic characteristics of the gas diffusion medium on polymer electrolyte fuel cell performance under non-humidification condition[J]. Energy Conversion and Management, 2014, 81: 220-230. |
128 | SEHKYU P, JONG-WON L, BRANKO N P. A review of gas diffusion layer in PEM fuel cells: materials and designs[J]. International Journal of Hydrogen Energy, 2012, 37(7): 5850-5865. |
129 | ADNAN O, SAMANEH S, LI X G, et al. A review of gas diffusion layers for proton exchange membrane fuel cells—With a focus on characteristics, characterization techniques, materials and designs[J]. Progress in Energy and Combustion Science, 2019, 74: 50-102. |
130 | BENZIGER J, NEHLSEN J, BLACKWELL D, et al. Water flow in the gas diffusion layer of PEM fuel cells[J]. Journal of Membrane Science, 2005, 261(1/2): 98-106. |
131 | NADA Z, LI X G. Effective transport properties for polymer electrolyte membrane fuel cells with a focus on the gas diffusion layer[J]. Progress in Energy and Combustion Science, 2013, 39(1): 111-146. |
132 | 魏明瑞. 碳纤维在质子交换膜燃料电池膜电极中的应用[J]. 纺织科学研究, 2012(2): 38-43. |
WEI Mingrui. Application of carbon fiber in membrane electrode of proton exchange membrane fuel cell[J]. Textile Science Research, 2012(2): 38-43. | |
133 | 王晓丽, 张华民, 张建鲁, 等. 质子交换膜燃料电池气体扩散层的研究进展[J]. 化学进展, 2006, 18(4): 507-512. |
WANG Xiaoli, ZHANG Huamin, ZHANG Jianlu, et al. Progress of gas diffusion layer for proton exchage membrane fuel cells[J]. Progress in Chemistry, 2006, 18(4): 507-512. | |
134 | GERTEISEN D, HEILMANN T, ZIEGLER C. Enhancing liquid water transport by laser perforation of a GDL in a PEM fuel cell[J]. Journal of Power Sources, 2008, 177(2): 348-354. |
135 | HAYASHI M, SUGITANI T, ASANO Y. Diffusion film, electrode having the diffusion film, and process for producing diffusion film: US20050173244A1[P]. 2005. |
136 | CHEN-YANG Y W, HUNG T F, HUANG J, et al. Novel single-layer gas diffusion layer based on PTFE/carbon black composite for proton exchange membrane fuel cell[J]. J. Power Sources, 2007, 173: 183-188. |
137 | MAKOTO N, YOSHIHIKO H, HIDEHIKO O, et al. Carbon fiber paper and porous carbon electrode base material for fuel cells: EP11958281 [P]. 2002-04-10. |
138 | MAKOTO N, YOSHIHIKO H, HIDEHIKO O, et al. Porous carbon electrode material, method for manufacturing the same and carbon fiber paper: US20021750731[P]. 2002-11-28. |
139 | NAKAMURA M, HOSAKO Y, OHASHI H, et al. Porous carbon electrode substrate and its production method and carbon fiber paper: US20051004981[P]. 2005-05-12. |
140 | 彭公秋, 李国丽, 曹正华, 等. 高性能聚丙烯腈基碳纤维发展现状与分析[J]. 材料导报, 2017, 31(S2): 398-402. |
PENG Gongqiu, LI Guoli, CAO Zhenghua, et al. Development situation and analysis of advanced PAN-based carbon fiber[J]. Sciences & Technology Review, 2017, 31(S2): 398-402. |
[1] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[2] | GAO Weitao, YIN Qinan, TU Ziqiang, GONG Fan, LI Yang, XU Hong, WANG Cheng, MAO Zongqiang. Proton transport in metal-organic frameworks and their applications in proton exchange membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 260-268. |
[3] | HU Bing, XU Lijun, HE Shan, SU Xin, WANG Jiwei. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604. |
[4] | WAN Nianfang. Research progress of membrane electrode assembly of proton exchange membrane water electrolysis for hydrogen production [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6385-6394. |
[5] | LI Zhenghan, TU Zhengkai. Research progress of simulation models of proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5272-5296. |
[6] | LI Yunfei, WANG Zhipeng, DUAN Lei, CHEN Liang, XU Shoudong, ZHANG Ding, DUAN Donghong, LIU Shibin. Research progress of ordered membrane electrode assembly for proton exchange membrane fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 101-110. |
[7] | WANG Minjian, CHEN Siguo, SHAO Minhua, WEI Zidong. Recent advances of electrocatalysts in hydrogen fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4948-4961. |
[8] | LI Jinsheng, GE Junjie, LIU Changpeng, XING Wei. Review on high temperature proton exchange membranes for fuel cell [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4894-4903. |
[9] | HE Guangli, DOU Meiling. Progress on effect of hydrogen impurities on the performance of automotive fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4815-4822. |
[10] | LIAO Peiyi, YANG Daijun, MING Pingwen, XUE Mingzhe, LI Bing, ZHANG Cunman. Research progress of gas-liquid two-phase flow in micro-channel and its application in PEMFC [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4734-4748. |
[11] | HE Zexing, SHI Chengxiang, CHEN Zhichao, PAN Lun, HUANG Zhenfeng, ZHANG Xiangwen, ZOU Jijun. Development status and prospects of proton exchange membrane water electrolysis [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4762-4773. |
[12] | LUO Huiling, SHAO Zhufeng, WANG Shubo, XU Xianlin. Preparation and performance of CC3 immobilized PAN nanofibers and its modified Nafion hybrid proton exchange membrane [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3854-3861. |
[13] | HE Jing, WANG Xiaojiang, ZHANG Shuomeng, HE Qinggang. Application of atomic force microscopy in the surface/interface phenomena of proton exchange membrane fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2993-3004. |
[14] | Xiaomin LIU, Bangqiang ZHANG, Bin AI, Yanmei YANG, Juan WANG, Haibo YANG, Hong CAI, Wei BAO. Development and current status of hydrogen quality standards for proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 703-708. |
[15] | Ziqian WANG, Linlin YANG, Hai SUN. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells—Part Ⅱ: Operation conditions [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 111-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |