Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (1): 21-30.DOI: 10.16085/j.issn.1000-6613.2020-0287
• Chemical processes and equipment • Previous Articles Next Articles
Ziqian ZHANG1(), Zaoxiao ZHANG1(), Qiang ZHANG2
Received:
2020-03-02
Online:
2021-01-12
Published:
2021-01-05
Contact:
Zaoxiao ZHANG
通讯作者:
张早校
作者简介:
张子倩(1996—),女,硕士研究生,研究方向为干湿联合冷却系统的优化。E-mail:基金资助:
CLC Number:
Ziqian ZHANG, Zaoxiao ZHANG, Qiang ZHANG. Development status and prospect of dry and wet combined cooling system technology[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 21-30.
张子倩, 张早校, 张强. 干湿联合冷却系统技术发展现状及展望[J]. 化工进展, 2021, 40(1): 21-30.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0287
比较项目 | 分建式干湿联合系统 | 合建式干湿联合系统 |
---|---|---|
运行模式控制 | 冬季可停运湿冷塔,不受干扰 | 冬季可停运湿冷塔 |
干冷段空冷散热器的 工作环境 | 不受湿冷塔排出湿热空气的影响,因而空冷散热器在长期运行不降低效率,清洗检修次数少 | 易受湿冷塔排出湿热空气的影响;包围翅片管式空冷散热器,易脏易腐蚀,影响使用寿命 |
消雾效果 | 效果差,停运湿冷塔消除 | 较为有效 |
防冻能力 | 停运湿冷塔 | 困难 |
发电成本 | 高 | 低 |
投资成本 | 高 | 低 |
比较项目 | 分建式干湿联合系统 | 合建式干湿联合系统 |
---|---|---|
运行模式控制 | 冬季可停运湿冷塔,不受干扰 | 冬季可停运湿冷塔 |
干冷段空冷散热器的 工作环境 | 不受湿冷塔排出湿热空气的影响,因而空冷散热器在长期运行不降低效率,清洗检修次数少 | 易受湿冷塔排出湿热空气的影响;包围翅片管式空冷散热器,易脏易腐蚀,影响使用寿命 |
消雾效果 | 效果差,停运湿冷塔消除 | 较为有效 |
防冻能力 | 停运湿冷塔 | 困难 |
发电成本 | 高 | 低 |
投资成本 | 高 | 低 |
1 | CABEZA L F, PALACIOS A, SERRANO S, et al. Comparison of past projections of global and regional primary and final energy consumption with historical data[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 681-688. |
2 | WANG T, WEN Y, LIN B. Energy consumption and the influencing factors in China: a nonlinear perspective[J]. Journal of Cleaner Production, 2019, 249: 119375. |
3 | 国家能源局. 能源蓝皮书:中国能源发展报告(2019)[R]. 北京: 中国能源研究, 2018. |
National Energy Administration. Energy blue book: China energy development report (2019)[R]. Beijing: China Energy Research, 2018. | |
4 | LIU Z, KARIMI I A, HE T. A novel inlet air cooling system based on liquefied natural gas cold energy utilization for improving power plant performance[J]. Energy Conversion and Management, 2019, 187: 41-52. |
5 | SUN Y, GUAN Z, HOOMAN K. A review on the performance evaluation of natural draft dry cooling towers and possible improvements via inlet air spray cooling[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 618-637. |
6 | JANI D B, MISHRA M, SAHOO P K. A critical review on application of solar energy as renewable regeneration heat source in solid desiccant-vapor compression hybrid cooling system[J]. Journal of Building Engineering, 2018, 18: 107-124. |
7 | KOJOK F, FARDOUN F, YOUNES R, et al. Hybrid cooling systems: a review and an optimized selection scheme[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 57-80. |
8 | HUANG X, CHEN L, YANG L, et al. Evaporation aided improvement for cooling performance of large scale natural draft dry cooling system[J]. Applied Thermal Engineering, 2019, 163: 114350. |
9 | HE S, GURGENCI H, GUAN Z, et al. Comparative study on the performance of natural draft dry, pre-cooled and wet cooling towers[J]. Applied Thermal Engineering, 2016, 99: 103-113. |
10 | YANG L J, CHEN L, DU X Z, et al. Effects of ambient winds on the thermo-flow performances of indirect dry cooling system in a power plant[J]. International Journal of Thermal Sciences, 2013, 64: 178-187. |
11 | LIZARTE R, IZQUIERDO M, MARCOS J D, et al. Experimental comparison of two solar-driven air-cooled LiBr/H2O absorption chillers: indirect versus direct air-cooled system[J]. Energy and Buildings, 2013, 62: 323-334. |
12 | LI Jianggang, LI Yazhong, GUO Hongbo, et al. Antifreezing reformation of heller type indirect air-cooling system and economy analysis[J]. Huadian Technology, 2014, 36(6): 40-44. |
13 | 张春雨, 严俊杰, 李秀云, 等. 哈蒙式间接空冷系统变工况特性的理论研究[J]. 动力工程学报, 2000, 20(1): 566-570. |
ZHANG Chunyu, YAN Junjie, LI Xiuyun, et al. Theoretical study on variable operating characteristics of harmonic indirect air cooling system[J]. Chinese Journal of Power Engineering, 2000, 20(1): 566-570. | |
14 | 万超, 陈胜利, 吕凯, 等. 环境风速对SCAL型间接空冷塔性能的影响[J]. 西北工业大学学报, 2018,36(3):456-463. |
WAN Chao, CHEN Shengli, Kai LYU, et al. Influence of ambient wind speed on the performance of SCAL type indirect air cooling tower[J]. Journal of Northwestern Polytechnical University, 2018, 36(3):456-463. | |
15 | SINGH K P, MACIUNAS V V, RAMPALL I. Dry cooling system for powerplants: US2016 / 048022[P]. 2017-02-23. |
16 | KONG Y, WANG W, YANG L, et al. Thermo-flow performances of natural draft direct dry cooling system at ambient winds[J]. International Journal of Heat and Mass Transfer, 2018, 116: 173-184. |
17 | GOLKAR B, NASERABAD S N, SOLEIMANY F, et al. Determination of optimum hybrid cooling wet/dry parameters and control system in off design condition: case study[J]. Applied Thermal Engineering, 2019, 149: 132-150. |
18 | 赵斌, 邬志红, 刘庆伏. 干湿联合冷却系统变工况特性分析[J]. 电站系统工程, 2016, 32(1): 60-63. |
ZHAO Bin, WU Zhihong, LIU Qingfu. Analysis on characteristics of combined wet and dry cooling system under variable working condition[J]. Power System Engineering, 2016, 32(1): 60-63. | |
19 | 黄钰琛. 合建式干湿联合冷却系统的传热流动特性数值模拟研究[D]. 北京: 华北电力大学(北京), 2017. |
HUANG Yuchen. Thermo-flow characteristics of hybrid cooling system based on numerical study[D]. Beijing: North China Electric Power University (Beijing), 2017. | |
20 | 彭向锋. 基于ε-NTU方法的干湿联合冷却塔特性分析[D]. 北京: 华北电力大学(北京), 2017. |
PENG Xiangfeng. Performance analysis of hybrid cooling tower based on effectiveness-NTU approach[D]. Beijing: North China Electric Power University (Beijing), 2017. | |
21 | ANDERSON N R. Evaluation of the performance characteristics of a hybrid (dry/wet) induced draft dephlegmator[D]. Stellenbosch: Stellenbosch University, 2014. |
22 | HEYNS J A. Performance characteristics of an air-cooled steam condenser incorporating a hybrid (dry/wet) dephlegmator[D]. Stellenbosch: Stellenbosch University, 2008. |
23 | 郭佳伟. 分建式直接空冷-湿冷联合冷却系统运行特性分析[D]. 北京: 华北电力大学, 2015. |
GUO Jiawei. Analysis of operation characteristics of direct air cooling wet cooling combined cooling system[D]. Beijing: North China Electric Power University, 2015. | |
24 | BLANCK D, MUNCH S. Design and construction of wet/dry cooling towers-examples from industry and power plants[C]//International Association for Hydraulic Research, 8th Cooling Tower and Sparying Pond Symposium, Karlsruhe Germany, 1992. |
25 | 黎颖慧, 韦红旗, 王丽丽, 等. 干湿联合冷却系统模型及其变工况特性分析[J]. 热力发电, 2014(4): 82-86. |
LI Yinghui, WEI Hongqi, WANG Lili, et al. Wet-dry joint cooling system model and its partial variable work condition properties[J]. Thermal Power Generation, 2014(4): 82-86. | |
26 | 郭民臣, 纪执琴, 安广然, 等. 干-湿冷却系统对空冷机组热经济性影响的分析[J]. 化工学报, 2015, 66(1): 433-440. |
GUO Minchen, JI Zhiqin, An Guangran, et al. Thermal economy analysis of power unit with wet-dry hybrid cooling system[J]. CIESC Journal, 2015, 66 (1): 433-440. | |
27 | REZAEI E, SHAFIEI S, ABDOLLAHNEZHAD A. Reducing water consumption of an industrial plant cooling unit using hybrid cooling tower[J]. Energy Conversion and Management, 2010, 51(2): 311-319. |
28 | 陈林, 彭向锋, 黄钰琛. 基于ε-NTU方法的干湿联合冷却塔特性分析[J]. 工程热物理学报, 2018, 39(1): 146-151. |
CHEN Lin, PENG Xiangfeng, HUANG Yuchen. Performance analysis of hybrid cooling tower based on effectiveness-NTU approach [J]. Journal of Engineering Thermophysics, 2018, 39 (1): 146-151. | |
29 | ASVAPOOSITKUL W, KUANSATHAN M. Comparative evaluation of hybrid (dry/wet) cooling tower performance[J]. Applied Thermal Engineering, 2014, 71(1): 83-93. |
30 | 李进, 周亚素, 庄亚男, 等. 串联型复合式冷却塔数学模型及试验验证[J]. 东华大学学报, 2017, 43(5): 732-738. |
LI Jin, ZHOU Yasu, ZHUANG Yanan, et al. Mathematical model and experimental validation of the Tandem-type hybrid cooling tower[J]. Journal of Donghua University, 2017, 43 (5): 732-738. | |
31 | WEI H, HUANG X, CHEN L, et al. Performance of a novel natural draft hybrid cooling tower for thermal power generation[J]. Energy Procedia, 2019, 158: 5231-5237. |
32 | WEI H, HUANG X, CHEN L, et al. Performance prediction and cost-effectiveness analysis of a novel natural draft hybrid cooling system for power plants[J]. Applied Energy, 2020, 262: 114555. |
33 | HUANG Y, CHEN L, HUANG X, et al. Performance of natural draft hybrid cooling system of large scale steam turbine generator unit[J]. Applied Thermal Engineering, 2017, 122: 227-244. |
34 | SARKER M, KIM E, MOON C, et al. Numerical simulation of the performance characteristics of the hybrid closed circuit cooling tower[J]. Nonlinear Analysis: Modelling and Control, 2008, 13(1): 89-101. |
35 | HUANG X, CHEN L, YANG L, et al. Cooling performance of natural draft hybrid system with parallel air path[J]. Applied Thermal Engineering, 2020, 169: 114971 |
36 | 李楠. 干湿两用闭式冷却塔的结构设计与性能分析[D]. 济南: 山东建筑大学, 2011. |
LI Nan. Configuration desgin and performance analysis on dry and wet closed cooling tower[D]. Jinan: Shandong Jianzhu University, 2011. | |
37 | 王晓霞. 风冷与蒸发冷却复合型冷却器的结构设计及性能分析[D]. 济南: 山东建筑大学, 2013. |
WANG Xiaoxia. Configuration desgin and performance analysis of air and evaporation composite cooler[D]. Jinan: Shandong Jianzhu University, 2013. | |
38 | OWEN M T F. Air-cooled condenser steam flow distribution and related dephlegmator design considerations[D]. Stellenbosch: Stellenbosch University, 2013. |
39 | GRAAFF A H. Performance evaluation of a hybrid (dry/wet) cooling system[D]. Stellenbosch: Stellenbosch University, 2017. |
40 | FAN J, DONG H, XU X, et al. Numerical investigation on the influence of mechanical draft wet-cooling towers on the cooling performance of air-cooled condenser with complex building environment[J]. Energies, 2019, 12(23): 4560. |
41 | SZABO Z, BALOGH A, LUDVIG L, et al. Hybrid condenser: US9897353B2[P]. 2018-02-20. |
42 | ENEXIO Company. Cooling-solutions: combined-drywet-cooling-systems[EB/OL]. ENEXIO Company official website. [2017-01-30]. . |
43 | 王雪莲. 干湿联合冷却塔的设计及节水量的计算[D]. 吉林: 东北电力大学, 2013. |
WANG Xuelian. Dry and wet combined cooling tower design and calculation of the amount of water[D]. Jilin: Northeast Electric Power University, 2013. | |
44 | 王涛涛, 于瑞红. 火电厂最佳循环水量的优化方法[J]. 煤炭科技, 2018(1): 90-92. |
WANG Taotao, YU Ruihong. Optimization method of optimum circulating water quantity in thermal power plant[J]. Coal Science & Technology Magazine, 2018(1): 90-92. | |
45 | 丁力, 鄢烈祥, 史彬, 等. 冷却塔水循环系统的集成优化[J]. 计算机与应用化学, 2010(11): 7-10. |
DING Li, YAN Liexiang, SHI Bin, et al. Integrated optimization of cooling tower water circulation system[J]. Computers and Applied Chemistry, 2010(11):7-10. | |
46 | PANJESHAHI M H, ATAEI A, GHARAIE M, et al. Optimum design of cooling water systems for energy and water conservation[J]. Chemical Engineering Research and Design, 2009, 87(2): 200-209. |
47 | BARIGOZZI G, PERDICHIZZI A, RAVELLI S. Performance prediction and optimization of a waste-to-energy cogeneration plant with combined wet and dry cooling system[J]. Applied Energy, 2014, 115: 65-74. |
48 | BARIGOZZI G, PERDICHIZZI A, RAVELLI S. Wet and dry cooling systems optimization applied to a modern waste-to-energy cogeneration heat and power plant[J]. Applied Energy, 2011, 88(4): 1366-1376. |
49 | 崔传涛. 火电厂干湿联合冷却系统优化设计方法的研究[D]. 长沙: 长沙理工大学, 2008. |
CUI Chuantao. Research on optimizing design method of dry and wet cooling system in thermal power plant[D]. Changsha: Changsha University of Science and Technology, 2008. | |
50 | 张炳文, 王雪莲. 新型干、湿联合冷却塔设计及节水量计算[J]. 热力发电, 2012, 41(12):55-57. |
ZHANG Bingwen, WANG Xuelian. Design of wet-dry cooling tower and its water consumption calculation[J]. Thermal Power Generation, 2012, 41 (12): 55-57. | |
51 | BRAUN J E. Near-optimal control strategies for hybrid cooling plants[J]. HVAC&R Research, 2007, 13(4): 599-622. |
52 | SINGH K, DAS R. Simultaneous optimization of performance parameters and energy consumption in induced draft cooling towers[J]. Chemical Engineering Research and Design, 2017, 123: 1-13. |
53 | 唐燕萍, 郑经纬. 火力发电厂节水技术综述[J]. 净水技术, 2017, 36(S2): 150-154. |
TANG Yanping, ZHENG Jingwei. Summarization of water-saving technology in thermal power plan[J]. Water Purification Technology, 2017, 36 (S2): 150-154. | |
54 | 时国华, 唐敏, 杨林棣, 等. 湿式冷却塔降雾节水技术的研究与发展[J]. 热能动力工程, 2019, 34(6): 1-10. |
SHI Guohua, TANG Min, YANG Lindi, et al. Recent advances in water saving technologies for reducing evaporation loss in wet cooling towers[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34 (6): 1-10. | |
55 | 李芳, 王景刚, 刘金荣. 热管技术应用于冷却塔节水的理论分析[C]//第三届制冷空调新技术研讨会, 杭州, 2005: 445-449. |
LI Fang, WANG Jinggang, LIU Jinrong. Analysis of saving water in the cooling tower using heat pipe[C]// The Third Symposium on New Technology of Refrigeration and Air Conditioning, Hangzhou, 2005: 445-449. | |
56 | HUBBARD B J, MOCKRY E F, KINNEY O L, et al. Air-to-air atmospheric heat exchanger for condensing cooling tower effluent: US6663087B2[P]. 2005-04-14. |
57 | MANTELLI M H B. Development of porous media thermosyphon technology for vapor recovering in cross-current cooling towers[J]. Applied Thermal Engineering, 2016, 108: 398-413. |
58 | 董京甫. 冷却塔水蒸发损失减少的方法和实施该方法的装置: CN1699908A[P]. 2009-03-11. |
DONG Jingfu. Method for reducing evaporation loss of cooling tower water and device for implementing the method: CN1699908A[P]. 2009-03-11. | |
59 | HUANG X, CHEN L, YANG L, et al. Evaporation aided improvement for cooling performance of large scale natural draft dry cooling system[J]. Applied Thermal Engineering, 2019, 163: 114350. |
60 | 张强, 郝玉涛, 杨双, 等. 露点间接蒸发冷却技术的研究进展及现状分析[J]. 制冷与空调(北京), 2010, 10(1): 17-22. |
ZHANG Qiang, HAO Yutao, YANG Shuang, et al. Research progress and present situation analysis of dew point indirect evaporative cooling technology[J]. Refrigeration and Air-Conditioning (Beijing), 2010, 10 (1): 17-22. | |
61 | LINDAHL P A, JAMESON R W. Plume abatement and water conservation with the wet/dry cooling tower[J]. CTI Journal, 1993, 14: 20-31. |
62 | LI S, MORADI A, VICKERS B, et al. Cooling tower plume abatement using a coaxial plume structure[J]. International Journal of Heat and Mass Transfer, 2018, 120: 178-193. |
63 | 马立卫, 李成. 节水消雾技术在某煤化工项目循环水冷却塔系统改造中的应用[J]. 煤炭加工与综合利用, 2018(6): 55-72. |
MA Liwei, LI Cheng. Application of water saving and defogging technology in the transformation of circulating water cooling tower system of a coal chemical project[J]. Coal Processing and Comprehensive Utilization, 2018 (6): 55-72. |
[1] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[2] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[3] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[4] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[5] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[6] | LI Chunli, HAN Xiaoguang, LIU Jiapeng, WANG Yatao, WANG Chenxi, WANG Honghai, PENG Sheng. Research progress of liquid distributors in packed columns [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4479-4495. |
[7] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[8] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[9] | WU Zhenghao, ZHOU Tianhang, LAN Xingying, XU Chunming. AI-driven innovative design of chemicals in practice and perspective [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. |
[10] | ZHANG Zhichen, ZHU Yunfeng, CHENG Weishu, MA Shoutao, JIANG Jie, SUN Bing, ZHOU Zichen, XU Wei. Research advances on runaway decomposition of high pressure polyethylene: Reaction mechanism, initiation system and model [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3979-3989. |
[11] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[12] | LIN Hai, WANG Yufei. Distributed wind farm layout optimization considering noise constraint [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3394-3403. |
[13] | LI Jiyan, JING Yanju, XING Guoyu, LIU Meichen, LONG Yong, ZHU Zhaoqi. Research progress and challenges of salt-resistant solar-driven interface photo-thermal materials and evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3611-3622. |
[14] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
[15] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |