Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (9): 4894-4903.DOI: 10.16085/j.issn.1000-6613.2021-0374
Previous Articles Next Articles
LI Jinsheng(), GE Junjie(), LIU Changpeng(), XING Wei()
Received:
2021-02-23
Revised:
2021-06-30
Online:
2021-09-13
Published:
2021-09-05
Contact:
GE Junjie,LIU Changpeng,XING Wei
通讯作者:
葛君杰,刘长鹏,邢巍
作者简介:
李金晟(1991—),男,博士,研究方向为燃料电池质子交换膜。E-mail:基金资助:
CLC Number:
LI Jinsheng, GE Junjie, LIU Changpeng, XING Wei. Review on high temperature proton exchange membranes for fuel cell[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4894-4903.
李金晟, 葛君杰, 刘长鹏, 邢巍. 燃料电池高温质子交换膜研究进展[J]. 化工进展, 2021, 40(9): 4894-4903.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0374
1 | STAFFELL Iain, SCAMMAN Daniel, ABAD Anthony Velazquez, et al. The role of hydrogen and fuel cells in the global energy system[J]. Energy & Environmental Science, 2019, 12: 463-491. |
2 | 王子乾, 杨林林, 孙海. 高温质子交换膜燃料电池性能衰减机理与缓解策略——第一部分:关键材料[J]. 化工进展, 2020, 39(6): 2370-2389. |
WANG Ziqian, YANG Linlin, SUN Hai. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells—Part Ⅰ: Materials[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2370-2389. | |
3 | Energy Information Administration US. International energy outlook 2017[R]. 2017.www.eia.gov/ieo. |
4 | MARCINKOSKI Jason, SPENDELOW Jacob, WILSON Adria, et al. DOE hydrogen and fuel cells program record #15015: fuel cell system cost—2015[R]. DOE, 2015. https://www.hydrogen.energy.gov/pdfs/17007_fuel_cell_system_cost_2017.pdf. |
5 | XIAO M, GAO L, WANG Y, et al. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis[J]. Journal of the American Chemical Society, 2019, 141(50): 19800-19806. |
6 | DUAN C X, LUO H C, LI J L, et al. A novel strategy to construct polybenzimidazole linked crosslinking networks for polymer electrolyte fuel cell applications[J]. Polymer, 2020, 201: 122555. |
7 | LI Q F, HE R H, GAO J A, et al. The CO poisoning effect in PEMFCs operational at temperatures up to 200℃[J]. Journal of the Electrochemical Society, 2003, 150(12): A1599-A1605. |
8 | HOGARTH W H J, DINIZ DA COSTA J C, LU G Q. Solid acid membranes for high temperature (>140°C) proton exchange membrane fuel cells[J]. Journal of Power Sources, 2005, 142(1/2): 223-237. |
9 | LI Qingfeng, HE Ronghuan, JENSEN Jens Oluf, et al. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100℃[J]. Chemistry of Materials, 2003, 15: 4896-4915. |
10 | SHAO Y Y, YIN G P, WANG Z B, et al. Proton exchange membrane fuel cell from low temperature to high temperature: material challenges[J]. Journal of Power Sources, 2007, 167(2): 235-242. |
11 | KIM Sung-Kon, KIM Tae-Ho, JUNG Jung-Woo, et al. Polybenzimidazole containing benzimidazole side groups for high-temperature fuel cell applications[J]. Polymer, 2009, 50(15): 3495-3502. |
12 | HAIDER R, WEN Y, MA Z F, et al. High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies[J]. Chemical Society Reviews, 2021, 50(2): 1138-1187. |
13 | WANG Kaili, YANG Li, WEI Wenxuan, et al. Phosphoric acid-doped poly(ether sulfone benzotriazole) for high-temperature proton exchange membrane fuel cell applications[J]. Journal of Membrane Science, 2018, 549: 23-27. |
14 | VILČIAUSKAS L, TUCKERMAN M E, BESTER G, et al. The mechanism of proton conduction in phosphoric acid[J]. Nature Chemistry, 2012, 4(6): 461-466. |
15 | AILI D, YANG J S, JANKOVA K, et al. From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolides[J]. Journal of Materials Chemistry A, 2020, 8(26): 12854-12886. |
16 | WAINRIGHT J S, WANG J T, WENG D, et al. Acid-doped polybenzimidazoles: a new polymer electrolyte[J]. Journal of the Electrochemical Society, 1995, 142(7): L121-L123. |
17 | FANG J, LIN X, CAI D, et al. Preparation and characterization of novel pyridine-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2016, 502: 29-36. |
18 | CHEN J C, HSIAO Y R, LIU Y C, et al. Polybenzimidazoles containing heterocyclic benzo[c]cinnoline structure prepared by sol-gel process and acid doping level adjustment for high temperature PEMFC application[J]. Polymer, 2019, 182: 121814. |
19 | YANG J S, XU Y X, ZHOU L, et al. Hydroxyl pyridine containing polybenzimidazole membranes for proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2013, 446: 318-325. |
20 | BERBER M R, NAKASHIMA N. Bipyridine-based polybenzimidazole membranes with outstanding hydrogen fuel cell performance at high temperature and non-humidifying conditions[J]. Journal of Membrane Science, 2019, 591: 117354. |
21 | NI J P, HU M S, LIU D, et al. Synthesis and properties of highly branched polybenzimidazoles as proton exchange membranes for high-temperature fuel cells[J]. Journal of Materials Chemistry C, 2016, 4(21): 4814-4821. |
22 | LEYKIN A Y, ASKADSKII A A, VASILEV V G, et al. Dependence of some properties of phosphoric acid doped PBIs on their chemical structure[J]. Journal of Membrane Science, 2010, 347(1/2): 69-74. |
23 | DING L M, WANG Y H, WANG L H, et al. A simple and effective method of enhancing the proton conductivity of polybenzimidazole proton exchange membranes through protonated polymer during solvation[J]. Journal of Power Sources, 2020, 455: 227965. |
24 | SHIN D W, GUIVER M D, LEE Y M. Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability[J]. Chemical Reviews, 2017, 117(6): 4759-4805. |
25 | MAITY S, JANA T. Polybenzimidazole block copolymers for fuel cell: synthesis and studies of block length effects on nanophase separation, mechanical properties, and proton conductivity of PEM[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6851-6864. |
26 | PINGITORE A, HUANG F, QIAN G Q, et al. Durable high polymer content m/p-polybenzimidazole membranes for extended lifetime electrochemical devices[J]. ACS Applied Energy Materials, 2019, 2(3): 1720-1726. |
27 | WANG L, WU Y N, FANG M L, et al. Synthesis and preparation of branched block polybenzimidazole membranes with high proton conductivity and single-cell performance for use in high temperature proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2020, 602: 117981. |
28 | AILI D, CLEEMANN L N, LI Q F, et al. Thermal curing of PBI membranes for high temperature PEM fuel cells[J]. Journal of Materials Chemistry, 2012, 22(12): 5444-5453. |
29 | YANG J, AILI D, LI Q, et al. Covalently cross-linked sulfone polybenzimidazole membranes with poly(vinylbenzyl chloride) for fuel cell applications[J]. ChemSusChem, 2013, 6(2): 275-282. |
30 | WANG Chuangang, LI Zhongfang, SUN Peng, et al. Preparation and properties of covalently crosslinked polybenzimidazole high temperature proton exchange membranes doped with high sulfonated polyphosphazene[J]. Journal of the Electrochemical Society, 2020, 167: 104517. |
31 | KRISHNAN N N, JOSEPH D, DUONG N M H, et al. Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells[J]. Journal of Membrane Science, 2017, 544: 416-424. |
32 | NAMBI KRISHNAN N, KONOVALOVA A, AILI D, et al. Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells[J]. Journal of Membrane Science, 2019, 588: 117218. |
33 | LI X B, MA H W, WANG P, et al. Highly conductive and mechanically stable imidazole-rich cross-linked networks for high-temperature proton exchange membrane fuel cells[J]. Chemistry of Materials, 2020, 32(3): 1182-1191. |
34 | YE Y S, RICK J, HWANG B J. Ionic liquid polymer electrolytes[J]. J. Mater. Chem. A, 2013, 1(8): 2719-2743. |
35 | WANG X, WANG S, LIU C, et al. Cage-like cross-linked membranes with excellent ionic liquid retention and elevated proton conductivity for HT-PEMFCs[J]. Electrochimica Acta, 2018, 283: 691-698. |
36 | LIU F X, WANG S, CHEN H, et al. The impact of poly (ionic liquid) on the phosphoric acid stability of polybenzimidazole-base HT-PEMs[J]. Renewable Energy, 2021, 163: 1692-1700. |
37 | SKORIKOVA G, RAUBER D, AILI D, et al. Protic ionic liquids immobilized in phosphoric acid-doped polybenzimidazole matrix enable polymer electrolyte fuel cell operation at 200℃[J]. Journal of Membrane Science, 2020, 608: 118188. |
38 | ESCORIHUELA J, NARDUCCI R, COMPAÑ V, et al. Proton conductivity of composite polyelectrolyte membranes with metal-organic frameworks for fuel cell applications[J]. Advanced Materials Interfaces, 2018, 6(2): 1801146. |
39 | ESCORIHUELA J, SAHUQUILLO Ó, GARCÍA-BERNABÉ A, et al. Phosphoric acid doped polybenzimidazole (PBI)/zeolitic imidazolate framework composite membranes with significantly enhanced proton conductivity under low humidity conditions[J]. Nanomaterials, 2018, 8(10): E775. |
40 | CHEN J L, WANG L, WANG L. Highly conductive polybenzimidazole membranes at low phosphoric acid uptake with excellent fuel cell performances by constructing long-range continuous proton transport channels using a metal-organic framework (UIO-66)[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41350-41358. |
41 | WANG Y, MA X, GHANEM B S, et al. Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations[J]. Materials Today Nano, 2018, 3: 69-95. |
42 | WANG P, LIU Z, LI X, et al. Toward enhanced conductivity of high-temperature proton exchange membranes: development of novel PIM-1 reinforced PBI alloy membranes[J]. Chemical Communications, 2019, 55(46): 6491-6494. |
43 | PU H T, LIU L, CHANG Z H, et al. Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO2[J]. Electrochimica Acta, 2009, 54(28): 7536-7541. |
44 | ÖZDEMIR Y, ÜREGEN N, DEVRIM Y. Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2648-2657. |
45 | KRISHNAN N N, LEE S, GHORPADE R V, et al. Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated TiO2 as both filler and crosslinker, and their use in the HT-PEM fuel cell[J]. Journal of Membrane Science, 2018, 560: 11-20. |
46 | ZHANG X X, LIU Q T, XIA L, et al. Poly(2, 5-benzimidazole)/sulfonated sepiolite composite membranes with low phosphoric acid doping levels for PEMFC applications in a wide temperature range[J]. Journal of Membrane Science, 2019, 574: 282-298. |
47 | MA W J, ZHAO C J, YANG J S, et al. Cross-linked aromatic cationic polymer electrolytes with enhanced stability for high temperature fuel cell applications[J]. Energy & Environmental Science, 2012, 5(6): 7617. |
48 | ZHANG N, WANG B L, ZHAO C J, et al. Quaternized poly (ether ether ketone)s doped with phosphoric acid for high-temperature polymer electrolyte membrane fuel cells[J]. Journal of Materials Chemistry A, 2014, 2(34): 13996-14003. |
49 | YANG J S, WANG J, LIU C, et al. Influences of the structure of imidazolium pendants on the properties of polysulfone-based high temperature proton conducting membranes[J]. Journal of Membrane Science, 2015, 493: 80-87. |
50 | LEE K-S, SPENDELOW J S, Y-K CHOE, et al. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs[J]. Nature Energy, 2016, 1: 16120. |
51 | LEE Y M. Fuel cells: operating flexibly[J]. Nature Energy, 2016, 1: 16136. |
52 | TANG H Y, GENG K, HAO J K, et al. Properties and stability of quaternary ammonium-biphosphate ion-pair poly(sulfone)s high temperature proton exchange membranes for H2/O2 fuel cells[J]. Journal of Power Sources, 2020, 475: 228521. |
53 | ZHANG J J, ZHANG J, BAI H J, et al. A new high temperature polymer electrolyte membrane based on tri-functional group grafted polysulfone for fuel cell application[J]. Journal of Membrane Science, 2019, 572: 496-503. |
54 | YANG J S, JIANG H X, WANG J, et al. Dual cross-linked polymer electrolyte membranes based on poly(aryl ether ketone) and poly(styrene-vinylimidazole-divinylbenzene) for high temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2020, 480: 228859. |
55 | BAI H J, PENG H Q, XIANG Y, et al. Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells[J]. Journal of Power Sources, 2019, 443: 227219. |
[1] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[2] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[3] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[4] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
[5] | MA Zhejie, ZHANG Wenli, ZHAO Xuankai, LI Ping. Progress on the influence of oxygen mass transfer resistance in PEMFC cathode catalyst layer [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2860-2873. |
[6] | YU Haiqiang, GUO Quanzhong, DU Keqin, WANG Chuan. Application of pulse electrodeposition PbO2 coating on stainless steel bipolar plate of PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 917-924. |
[7] | GAO Weitao, YIN Qinan, TU Ziqiang, GONG Fan, LI Yang, XU Hong, WANG Cheng, MAO Zongqiang. Proton transport in metal-organic frameworks and their applications in proton exchange membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 260-268. |
[8] | CHEN Zhekun, PAN Weitong, YAO Dingsong, DING Lu, WANG Fuchen. Microstructure and rheology of microporous layer ink for proton exchange membrane fuel cells [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3808-3815. |
[9] | PAN Wenzheng, JI Zhiyong, WANG Jing, LI Shuming, HUANG Zhihui, GUO Xiaofu, LIU Jie, ZHAO Yingying, YUAN Junsheng. Research on the electricity production performance and degradation process of microbial fuel cell treating azo-dye saline wastewater [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3306-3313. |
[10] | GAO Weitao, LEI Yijie, ZHANG Xun, HU Xiaobo, SONG Pingping, ZHAO Qing, WANG Cheng, MAO Zongqiang. An overview of proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555. |
[11] | ZHANG Dong, ZHANG Rui, ZHANG Bin, AN Zhoujian, LEI Che. Research progress of combined cooling-heat-and-power systems based on PEMFC [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1608-1621. |
[12] | CHEN Shiyu, XU Zhicheng, YANG Jing, XU Hao, YAN Wei. Research progress of microbial fuel cell in wastewater treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 951-963. |
[13] | FENG Zhanxiong, WANG Yun, MA Qiang, ZHANG Chuang, WANG Cheng. Preparation of Pt/C catalyst by continuous pipeline microwave technology and its oxygen reduction performance [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6377-6384. |
[14] | DU Xin, FAN Jinwei, GUO Lijun, WANG Jinlong. Simulation of fuel cell aging process with heterogeneous agglomerate model [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5755-5760. |
[15] | WANG Meng, LIU Lili, LI Na, HU Zhaoxia, CHEN Shouwen. Preparation and properties of sulfonate modification nano-diamonds doped sulfonated poly(aryl ether sulfone) proton exchange membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5645-5652. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |