Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (9): 4894-4903.DOI: 10.16085/j.issn.1000-6613.2021-0374

Previous Articles     Next Articles

Review on high temperature proton exchange membranes for fuel cell

LI Jinsheng(), GE Junjie(), LIU Changpeng(), XING Wei()   

  1. State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
  • Received:2021-02-23 Revised:2021-06-30 Online:2021-09-13 Published:2021-09-05
  • Contact: GE Junjie,LIU Changpeng,XING Wei

燃料电池高温质子交换膜研究进展

李金晟(), 葛君杰(), 刘长鹏(), 邢巍()   

  1. 中国科学院长春应用化学研究所,先进化学电源实验室,电分析化学国家重点实验室,吉林 长春 130022
  • 通讯作者: 葛君杰,刘长鹏,邢巍
  • 作者简介:李金晟(1991—),男,博士,研究方向为燃料电池质子交换膜。E-mail:lijinsheng@ciac.ac.cn
  • 基金资助:
    国家重点研发计划(2018YFB1502300);国家自然科学基金(21633008);中国科学院战略重点研究先导项目(XDA09030104);吉林省科技发展项目(20200201001JC)

Abstract:

High temperature proton exchange membrane fuel cell (HT-PEMFC) has the advantages of fast reaction rate and high CO tolerance. However, the phosphoric acid doped high temperature proton exchange membranes (HT-PEM) often suffer from phosphoric acid leakage and polymer degradation. This article reviews the effects of main chain structure, functional group structure and composite fillers on the critical membrane properties. The HT-PEM based on polybenzimidazole and its derivatives, on polybenzimidazole composites and on other aromatic-based polymers have been discussed. In addition, modification methods in recent reports such as increasing free volume, crosslinking, block copolymerization, composition (ILs, MOFs, PIMs, MOx), and cationic modification are discussed. Further understanding of specific proton transport channel structure, polymer chemical degradation mechanism and physical degradation mechanism is necessitated to address the long-term stability issue of HT-PEM. The development of alternative polymer materials is expected to become the research focus of HT-PEM.

Key words: fuel cell, high temperature proton exchange membrane, polybenzimidazole, poly(aryl ether ketone sulfone), long-term stability

摘要:

高温质子交换膜燃料电池具有反应动力学快、CO耐受性高等特点,但磷酸掺杂的高温质子交换膜因磷酸的流失和聚合物的降解等原因导致燃料电池的输出功率发生衰减。本文通过介绍聚苯并咪唑衍生物的高温质子交换膜、聚苯并咪唑的复合型质子交换膜、新型芳基聚合物的高温质子交换膜,阐明聚合物的主链结构、官能团结构以及复合填料对高温质子交换膜性能的影响。在近期的研究报道中,提高膜性能的主要策略包括提升自由体积、建立交联结构、嵌段共聚、复合掺杂(ILs、MOFs、PIMs、MOx)、阳离子官能团修饰等。文章指出,在未来的研究中应该加强对磷酸基高温质子交换膜质子传输通道结构的进一步理解,关注聚合物化学降解和物理性能衰败的原因,并开发更多的新型聚合物材料。

关键词: 燃料电池, 高温质子交换膜, 聚苯并咪唑, 聚芳醚酮砜, 长期稳定性

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd