Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (5): 2719-2729.DOI: 10.16085/j.issn.1000-6613.2020-1165

• Biochemical and pharmaceutical engineering • Previous Articles     Next Articles

Research progress of biomacromolecular-mediated biomimetic mineralization for the preparation of magnetic nanoparticles

ZHOU Yanhong(), LI Xialan, ZHANG Guangya()   

  1. College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China
  • Received:2020-06-23 Online:2021-05-24 Published:2021-05-06
  • Contact: ZHANG Guangya

生物大分子介导仿生矿化制备磁性纳米粒子的研究进展

周雁红(), 李夏兰, 张光亚()   

  1. 华侨大学化工学院,福建 厦门 361021
  • 通讯作者: 张光亚
  • 作者简介:周雁红(1996—),女,硕士研究生,研究方向为纳米材料的仿生制备。E-mail:zhouyh1026@126.com
  • 基金资助:
    国家自然科学基金(21376103);福建省自然科学基金(2020J01079);华侨大学研究生科研创新能力培育计划

Abstract:

Compared with other nanomaterials, Fe3O4 nanoparticles are widely used in enzyme immobilization, targeted drug delivery and nucleic acid extraction due to their unique magnetic properties. However, their applications in different aspects have different requirements on the size and morphology of the particles themselves. For example, the smaller Fe3O4 has the less side effects to the human body and is more promising for the effective targeted treatment of diseases. The precise control of the size and shape of the magnetite nanoparticles becomes particularly important in recent years. Therefore, this paper reviewed the traditional methods of preparing magnetic nanoparticles by co-precipitation, which require the use of organic solvents or high temperature control, and introduced the environmental pollution and safety problems existing in these methods. Besides, we expounded the new trend of the preparation of magnetic nanoparticles by biological macromolecule mediated biomimetic mineralization which is inspired by biomineralization in nature. Moreover, the latest research progress in protein (or peptide) mediated biomimetic mineralization for the preparation of magnetic nanoparticles was reviewed as well. The advantages and disadvantages of the methods in the size and shape control of magnetite (Fe3O4) nanoparticles, together with the challenges were also addressed.

Key words: magnetite nanoparticles, polypeptide, biomolecule engineering, biotemplating mineralization, control of size and morphology

摘要:

相比其他纳米材料,磁铁矿(Fe3O4)纳米粒子由于具有磁响应性而被广泛应用于酶固定化、定向给药及核酸提取等方面。不同大小和形状的磁铁矿纳米颗粒可用于不同的领域,如晶体尺寸越小的Fe3O4对人体副作用越小,有望用于疾病高效、靶向治疗。近年来,控制Fe3O4纳米粒子大小和形貌的新方法研究逐步成为热点。因此,本文回顾了传统的共沉淀制备磁性纳米颗粒的方法,这些方法需要使用有机溶剂或高温等条件控制,介绍了这些方法存在的环境污染和安全性问题。在此基础上,本文深入介绍了近年来出现的一种受自然界生物矿化启发的生物大分子介导的仿生矿化制备磁性纳米粒子的新趋势,综述了生物大分子蛋白质(或多肽)介导的仿生矿化的最新研究进展,阐释了该方法在磁铁矿(Fe3O4)纳米粒子的大小和形貌控制方面的优缺点,并对其应用前景及面临的挑战进行了展望。

关键词: 磁性纳米粒子, 多肽, 生物分子工程, 生物模板矿化, 尺寸及形貌控制

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd