Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (3): 1187-1201.DOI: 10.16085/j.issn.1000-6613.2020-1944
• Special column:Green biomanufacturing • Previous Articles Next Articles
WANG Ying1,2,3(), QU Junze1,2,3(), LIANG Nan1,2,3, HAO He1,2,3, YUAN Yingjin1,2,3()
Received:
2020-09-23
Online:
2021-03-17
Published:
2021-03-05
Contact:
YUAN Yingjin
王颖1,2,3(), 曲俊泽1,2,3(), 梁楠1,2,3, 郝鹤1,2,3, 元英进1,2,3()
通讯作者:
元英进
作者简介:
王颖(1983—),女,讲师,研究方向为合成生物学。E-mail:基金资助:
CLC Number:
WANG Ying, QU Junze, LIANG Nan, HAO He, YUAN Yingjin. Rapid construction and directed evolution of cell factories for carotenoid biosynthesis[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1187-1201.
王颖, 曲俊泽, 梁楠, 郝鹤, 元英进. 合成类胡萝卜素细胞工厂的快速构建和定向进化[J]. 化工进展, 2021, 40(3): 1187-1201.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1944
底盘物种 | 产品 | 工程化手段 | 产量/mg·L-1 | 产率/mg·g DCW-1 | 参考文献 |
---|---|---|---|---|---|
大肠杆菌 | 番茄红素 | 过表达磷酸戊糖途径和TCA循环关键蛋白戊二酸脱氢酶SucAB、琥珀酸脱氢酶SdhABCD和转醛酶B TalB,提高底盘NADPH和ATP的供给 基于RBS序列调节dxs、idi和crt基因簇的转录水平 | 3520 | 50.6 | [ |
β-胡萝卜素 | 将合成路径划分为MEP路径、β-胡萝卜素合成、ATP合成、磷酸戊糖途径、TCA循环5个模块,分别进行工程化优化改造 调节MEP路径模块和β-胡萝卜素合成模块表达强度,过表达dxs和idi 过表达α-酮戊二酸脱氢酶SucAB和琥珀酸脱氢酶SdhABCD,增强TCA循环,提高能量和还原力NADPH供给 过表达转醛酶TalB,增强磷酸戊糖途径,提高NADPH供给 | 2100 | 59.9 | [ | |
β-胡萝卜素 | 敲除葡萄糖-6-磷酸脱氢酶编码基因zwf,减弱碳代谢流进入磷酸戊糖途径;以半乳糖渗透酶系统(galP)替代葡萄糖磷酸转移酶系统(ptsHIcrr)负责葡萄糖转运,减少磷酸烯醇式丙酮酸的消耗,提高MEP路径前体供给 敲除醛还原酶编码基因yjgB,降低NADPH的消耗;过表达nadK,将NADH转化为NADPH,提高NADPH供给 | 2579 | NP | [ | |
β-胡萝卜素 | 引入异源MVA路径 上调dxs、fni、GPPS2,优化内源MEP路径 发酵条件优化,以甘油为碳源 | 3200 | NP | [ | |
玉米黄质 | 应用可调控基因间序列平衡异MVA路径蛋白表达 使用IPP/FPP响应启动子动态调控异源MVA路径基因,避免有毒中间代谢物积累 | 722.5 | 23.2 | [ | |
虾青素 | 组合筛选路径基因启动子,促进番茄红素向β-胡萝卜素转化 OmpF和TrxA标签分别与截短蛋白N端或C端融合,实现CrtW的稳定表达和质膜定位 优化培养基碳源和发酵温度,降低IPTG诱导浓度 基于代谢流分析选择过表达靶点ispD和ispF 引入毒素-抗毒素系统hok/sok,提高表达质粒稳定性 | 432.8 | 7.12 | [ | |
藏红花酸 | 组合筛选CCD、ALD、UGT 体外酶活实验确定UGT功能 | 4.42 | NP | [ | |
酿酒酵母 | 番茄红素 | CrtB序列的筛选 CrtYB与CrtE的定向进化 调节Crt编码基因拷贝数 构建非营养缺陷二倍体细胞 | 1610 | 24.41 | [ |
番茄红素 | 过表达乙醇脱氢酶ADH2、乙醛脱氢酶ALD6和来自沙门氏菌的乙酰-CoA合成酶ACS,提高前体乙酰-CoA的供给 过表达tHMGR,增强MVA路径 过表达NADH激酶POS5,促进NADH向NADPH的转化 增加CrtE和CrtI的拷贝数 敲除YPL062W和EXG1 引入乙酰-CoA羧化酶ACC1突变体S659A/S1157A,过表达磷脂酸磷酸酶PAH1和二酰基甘油酰基转移酶DGA1,增强甘油三酯的合成 过表达脂肪酸脱氢酶OLE1,增加不饱和脂肪酸的含量 敲除Seipin编码基因FLD1,增大脂质体体积 | 2370 | 73.3 | [ | |
番茄红素 | 启动子筛选 过表达tHMGR,增强MVA路径 筛选CrtE、CrtB、CrtI来源,增加CrtE和CrtI的拷贝数 过表达NADH激酶POS5,促进NADH向NADPH的转化 过表达乙醇脱氢酶ADH2、乙醛脱氢酶ALD6和来自沙门氏菌的乙酰-CoA合成酶ACS,提高前体乙酰-CoA的供给 ΔGAL80与ΔGAL1,7,10诱导系统的比较 | 3280 | NP | [ | |
番茄红素 | 敲除YPL062W提高乙酰-CoA供给 组合筛选CrtE、CrtB、CrtI来源 调节CrtI表达水平 选择底盘交配型 工程化非路径相关靶点,即敲除ROX1和过表达INO2 引入异源血红蛋白VHb 连续自循环发酵 | 5880 | NP | [ | |
β-胡萝卜素 | 以GAL系统和HXT1启动子时序调控胡萝卜素和竞争性鲨烯的合成 | 1156 | 20.8 | [ | |
虾青素 | CrtZ和CrtW协同定向进化 温敏调控系统控制关键基因表达 | 235.0 | NP | [ | |
虾青素 | 等离子体诱变与适应性进化交替,促进菌株进化 | 404.8 | NP | [ | |
藏红花酸 | 组合筛选CrtZ、CCD、ALD 发酵温度优化 CCD和ALD的过表达 | 6.278 | NP | [ | |
藏红花酸 | 引入温敏调控系统控制藏红花酸合成,隔离细胞生长和生产 调节CCD2和ALDH的拷贝数 培养基碳源葡萄糖和半乳糖比例优化 | NP | 0.14 | [ | |
藏红花酸 | 强化前体供应:敲除柠檬酸合酶CIT2、苹果酸合酶MLS1 CrtZ和CCD2的融合表达 | 12.43 | NP | [ | |
耶氏解脂 酵母 | 番茄红素 | 引入异戊烯醇同化路径,增强前体IPP/DMAPP供给 增强脂质积累 增加IDI拷贝 | 4200 | 约170 | [ |
β-胡萝卜素 | 敲除KU70,增强同源重组效率 敲除过氧化氢酶编码基因YALI0F30987、脂代谢相关基因LIP1、POX3-6,并作为后续表达盒整合位点 过表达3个拷贝tHMGR、4个拷贝CrtYB和1个拷贝的CrtE、CrtI 过表达2个拷贝的MVA路径蛋白ERG10、ERG13、ERG12、ERG8、ERG19、IDI、ERG20 用受葡萄糖和甘油抑制的启动子ALK1p替换ERG9本源启动子,以实现ERG9下调 氮源抑制发酵 | 3968 | 49.0 | [ | |
β-胡萝卜素 | 敲除脂代谢基因POX2、MFE、POX3、LIP1,增强脂质积累 过表达HMGR、ERG13,增强MVA路径 增加3个拷贝的CrtYB、2个拷贝的CrtI和1个拷贝的CrtE 下调鲨烯合酶的表达 | 4500 | 57.5 | [ | |
β-胡萝卜素 | 选择高度积累脂质的底盘 路径基因启动子的组合适配 发酵条件优化 | 6500 | 89.6 | [ | |
虾青素 | 下调鲨烯合酶的表达 同时表达不同来源的CrtE 筛选CrtZ/CrtW来源,调节表达量 | 285 | 6.0 | [ |
底盘物种 | 产品 | 工程化手段 | 产量/mg·L-1 | 产率/mg·g DCW-1 | 参考文献 |
---|---|---|---|---|---|
大肠杆菌 | 番茄红素 | 过表达磷酸戊糖途径和TCA循环关键蛋白戊二酸脱氢酶SucAB、琥珀酸脱氢酶SdhABCD和转醛酶B TalB,提高底盘NADPH和ATP的供给 基于RBS序列调节dxs、idi和crt基因簇的转录水平 | 3520 | 50.6 | [ |
β-胡萝卜素 | 将合成路径划分为MEP路径、β-胡萝卜素合成、ATP合成、磷酸戊糖途径、TCA循环5个模块,分别进行工程化优化改造 调节MEP路径模块和β-胡萝卜素合成模块表达强度,过表达dxs和idi 过表达α-酮戊二酸脱氢酶SucAB和琥珀酸脱氢酶SdhABCD,增强TCA循环,提高能量和还原力NADPH供给 过表达转醛酶TalB,增强磷酸戊糖途径,提高NADPH供给 | 2100 | 59.9 | [ | |
β-胡萝卜素 | 敲除葡萄糖-6-磷酸脱氢酶编码基因zwf,减弱碳代谢流进入磷酸戊糖途径;以半乳糖渗透酶系统(galP)替代葡萄糖磷酸转移酶系统(ptsHIcrr)负责葡萄糖转运,减少磷酸烯醇式丙酮酸的消耗,提高MEP路径前体供给 敲除醛还原酶编码基因yjgB,降低NADPH的消耗;过表达nadK,将NADH转化为NADPH,提高NADPH供给 | 2579 | NP | [ | |
β-胡萝卜素 | 引入异源MVA路径 上调dxs、fni、GPPS2,优化内源MEP路径 发酵条件优化,以甘油为碳源 | 3200 | NP | [ | |
玉米黄质 | 应用可调控基因间序列平衡异MVA路径蛋白表达 使用IPP/FPP响应启动子动态调控异源MVA路径基因,避免有毒中间代谢物积累 | 722.5 | 23.2 | [ | |
虾青素 | 组合筛选路径基因启动子,促进番茄红素向β-胡萝卜素转化 OmpF和TrxA标签分别与截短蛋白N端或C端融合,实现CrtW的稳定表达和质膜定位 优化培养基碳源和发酵温度,降低IPTG诱导浓度 基于代谢流分析选择过表达靶点ispD和ispF 引入毒素-抗毒素系统hok/sok,提高表达质粒稳定性 | 432.8 | 7.12 | [ | |
藏红花酸 | 组合筛选CCD、ALD、UGT 体外酶活实验确定UGT功能 | 4.42 | NP | [ | |
酿酒酵母 | 番茄红素 | CrtB序列的筛选 CrtYB与CrtE的定向进化 调节Crt编码基因拷贝数 构建非营养缺陷二倍体细胞 | 1610 | 24.41 | [ |
番茄红素 | 过表达乙醇脱氢酶ADH2、乙醛脱氢酶ALD6和来自沙门氏菌的乙酰-CoA合成酶ACS,提高前体乙酰-CoA的供给 过表达tHMGR,增强MVA路径 过表达NADH激酶POS5,促进NADH向NADPH的转化 增加CrtE和CrtI的拷贝数 敲除YPL062W和EXG1 引入乙酰-CoA羧化酶ACC1突变体S659A/S1157A,过表达磷脂酸磷酸酶PAH1和二酰基甘油酰基转移酶DGA1,增强甘油三酯的合成 过表达脂肪酸脱氢酶OLE1,增加不饱和脂肪酸的含量 敲除Seipin编码基因FLD1,增大脂质体体积 | 2370 | 73.3 | [ | |
番茄红素 | 启动子筛选 过表达tHMGR,增强MVA路径 筛选CrtE、CrtB、CrtI来源,增加CrtE和CrtI的拷贝数 过表达NADH激酶POS5,促进NADH向NADPH的转化 过表达乙醇脱氢酶ADH2、乙醛脱氢酶ALD6和来自沙门氏菌的乙酰-CoA合成酶ACS,提高前体乙酰-CoA的供给 ΔGAL80与ΔGAL1,7,10诱导系统的比较 | 3280 | NP | [ | |
番茄红素 | 敲除YPL062W提高乙酰-CoA供给 组合筛选CrtE、CrtB、CrtI来源 调节CrtI表达水平 选择底盘交配型 工程化非路径相关靶点,即敲除ROX1和过表达INO2 引入异源血红蛋白VHb 连续自循环发酵 | 5880 | NP | [ | |
β-胡萝卜素 | 以GAL系统和HXT1启动子时序调控胡萝卜素和竞争性鲨烯的合成 | 1156 | 20.8 | [ | |
虾青素 | CrtZ和CrtW协同定向进化 温敏调控系统控制关键基因表达 | 235.0 | NP | [ | |
虾青素 | 等离子体诱变与适应性进化交替,促进菌株进化 | 404.8 | NP | [ | |
藏红花酸 | 组合筛选CrtZ、CCD、ALD 发酵温度优化 CCD和ALD的过表达 | 6.278 | NP | [ | |
藏红花酸 | 引入温敏调控系统控制藏红花酸合成,隔离细胞生长和生产 调节CCD2和ALDH的拷贝数 培养基碳源葡萄糖和半乳糖比例优化 | NP | 0.14 | [ | |
藏红花酸 | 强化前体供应:敲除柠檬酸合酶CIT2、苹果酸合酶MLS1 CrtZ和CCD2的融合表达 | 12.43 | NP | [ | |
耶氏解脂 酵母 | 番茄红素 | 引入异戊烯醇同化路径,增强前体IPP/DMAPP供给 增强脂质积累 增加IDI拷贝 | 4200 | 约170 | [ |
β-胡萝卜素 | 敲除KU70,增强同源重组效率 敲除过氧化氢酶编码基因YALI0F30987、脂代谢相关基因LIP1、POX3-6,并作为后续表达盒整合位点 过表达3个拷贝tHMGR、4个拷贝CrtYB和1个拷贝的CrtE、CrtI 过表达2个拷贝的MVA路径蛋白ERG10、ERG13、ERG12、ERG8、ERG19、IDI、ERG20 用受葡萄糖和甘油抑制的启动子ALK1p替换ERG9本源启动子,以实现ERG9下调 氮源抑制发酵 | 3968 | 49.0 | [ | |
β-胡萝卜素 | 敲除脂代谢基因POX2、MFE、POX3、LIP1,增强脂质积累 过表达HMGR、ERG13,增强MVA路径 增加3个拷贝的CrtYB、2个拷贝的CrtI和1个拷贝的CrtE 下调鲨烯合酶的表达 | 4500 | 57.5 | [ | |
β-胡萝卜素 | 选择高度积累脂质的底盘 路径基因启动子的组合适配 发酵条件优化 | 6500 | 89.6 | [ | |
虾青素 | 下调鲨烯合酶的表达 同时表达不同来源的CrtE 筛选CrtZ/CrtW来源,调节表达量 | 285 | 6.0 | [ |
底盘物种 | 优势 | 产品 | 产量 /mg·L-1 | 产率 /mg·g DCW-1 | 参考 文献 |
---|---|---|---|---|---|
恶臭假单胞菌 (Pseudomonas putida) | 化学品、有机溶剂耐受性高 NADPH再生快 | 玉米黄质 | 239① | NP | [ |
谷氨酸棒杆菌 (Corynebacterium glutamicum) | 可利用多种碳源 天然合成C50类胡萝卜素 | 虾青素 | NP | 1.6 | [ |
毕赤酵母 (Pichia pastoris) | 蛋白表达的优势宿主,翻译后修饰更接近天然蛋白 | 番茄红素 | 714 | 9.319 | [ |
克鲁维酵母 (Kluyveromyces marxianus) | 耐热性好,可在25~52℃的温度下发酵 单位碳源生物量转化率高 | 虾青素 | NP | 9.972 | [ |
集胞藻 (Synechocystis sp.) | 光自养型微生物; 单位碳源生物量转化率高 | 虾青素 | NP | 29.6① | [ |
底盘物种 | 优势 | 产品 | 产量 /mg·L-1 | 产率 /mg·g DCW-1 | 参考 文献 |
---|---|---|---|---|---|
恶臭假单胞菌 (Pseudomonas putida) | 化学品、有机溶剂耐受性高 NADPH再生快 | 玉米黄质 | 239① | NP | [ |
谷氨酸棒杆菌 (Corynebacterium glutamicum) | 可利用多种碳源 天然合成C50类胡萝卜素 | 虾青素 | NP | 1.6 | [ |
毕赤酵母 (Pichia pastoris) | 蛋白表达的优势宿主,翻译后修饰更接近天然蛋白 | 番茄红素 | 714 | 9.319 | [ |
克鲁维酵母 (Kluyveromyces marxianus) | 耐热性好,可在25~52℃的温度下发酵 单位碳源生物量转化率高 | 虾青素 | NP | 9.972 | [ |
集胞藻 (Synechocystis sp.) | 光自养型微生物; 单位碳源生物量转化率高 | 虾青素 | NP | 29.6① | [ |
1 | TAKAICHI S. Carotenoids in algae: distributions, biosyntheses and functions[J]. Marine Drugs, 2011, 9(6): 1101-1118. |
2 | CARAIL M, CARIS-VEYRAT C. Carotenoid oxidation products: from villain to saviour?[J]. Pure and Applied Chemistry, 2006, 78(8): 1493-1503. |
3 | AULDRIDGE M E, MCCARTY D R, KLEE H J. Plant carotenoid cleavage oxygenases and their apocarotenoid products[J]. Current Opinion in Plant Biology, 2006, 9: 315-321. |
4 | AHRAZEM O, GÓMEZ-GÓMEZ L, RODRIGO M, et al. Carotenoid cleavage oxygenases from microbes and photosynthetic organisms: features and functions[J]. International Journal of Molecular Sciences, 2016, 17(11): 1781. |
5 | MUSSAGY C U, WINTERBURN J, SANTOS-EBINUMA V C, et al. Production and extraction of carotenoids produced by microorganisms[J]. Applied Microbiology and Biotechnology, 2019, 103(3): 1095-1114. |
6 | GHAZI H, USHIO S, GOTO H, et al. Astaxanthin, a carotenoid with potential in human health and nutrition[J]. Journal of Natural Products, 2006, 3(69): 443-449. |
7 | BONGERS M, CHRYSANTHOPOULOS P K, BEHRENDORFF J B, et al. Systems analysis of methylerythritol-phosphate pathway flux in E. coli: insights into the role of oxidative stress and the validity of lycopene as an isoprenoid reporter metabolite[J]. Microbial Cell Factories, 2015, 14: 193. |
8 | WANG J, MENG H, XIONG Z, et al. Identification of novel knockout and up-regulated targets for improving isoprenoid production in E. coli[J]. Biotechnology Letters, 2014, 36(5): 1021-1027. |
9 | OSTROV N, JIMENEZ M, BILLERBECK S, et al. A modular yeast biosensor for low-cost point-of-care pathogen detection[J]. Science Advances, 2017, 3(6): e1603221. |
10 | WATSTEIN D M, MCNERNEY M P, STYCZYNSKI M P. Precise metabolic engineering of carotenoid biosynthesis in Escherichia coli towards a low-cost biosensor[J]. Metabolic Engineering, 2015, 31: 171-180. |
11 | YANG J, GUO L. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways[J]. Microbial Cell Factories, 2014, 13(1): 160. |
12 | LI Y, LIN Z, HUANG C, et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing[J]. Metabolic Engineering, 2015, 31: 13-21. |
13 | GAO S, TONG Y, ZHU L, et al. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production[J]. Metabolic Engineering, 2017, 41: 192-201. |
14 | MA T, SHI B, YE Z, et al. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene[J]. Metabolic Engineering, 2019, 52: 134-142. |
15 | LÓPEZ J, CATALDO V F, PEÑA M, et al. Build your bioprocess on a solid strain-β-carotene production in recombinant Saccharomyces cerevisiae[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 1-9. |
16 | SUN T, MIAO L, LI Q, et al. Production of lycopene by metabolically-engineered Escherichia coli[J]. Biotechnology Letters, 2014, 36(7): 1515-1522. |
17 | SHI B, MA T, YE Z, et al. Systematic metabolic engineering of Saccharomyces cerevisiae for lycopene overproduction[J]. Journal of Agricultural and Food Chemistry, 2019, 67(40): 11148-11157. |
18 | WU Y, YAN P, LI Y, et al. Enhancing β-carotene production in Escherichia coli by perturbing central carbon metabolism and improving the NADPH supply[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 585. |
19 | 陶俊, 张上隆, 徐昌杰, 等. 类胡萝卜素合成的相关基因及其基因工程[J]. 生物工程学报, 2002, 18(3): 276-281. |
TAO Jun, ZHANG Shanglong, XU Changjie, et al. Gene and gene engineering of carotenoid biosynthesis[J]. Chinese Journal of Biotechnology, 2002, 18(3): 276-281. | |
20 | LEE W, LEE D G. Lycopene-induced hydroxyl radical causes oxidative DNA damage in Escherichia coli[J]. Journal of Microbiology and Biotechnology, 2014, 24(9): 1232-1237. |
21 | LU Q, LIU J. Enhanced astaxanthin production in Escherichia colivia morphology and oxidative stress engineering[J]. Journal of Agricultural and Food Chemistry, 2019, 67(42): 11703-11709. |
22 | 武陶, 张柏林, 毕昌昊. 细胞膜合成途径模块化调控与形态改造提高大肠杆菌β-胡萝卜素的积累与产量[J]. 生物工程学报, 2018, 34(5): 703-711. |
WU Tao, ZHANG Bolin, BI Changhao. Improving β-carotene production in Escherichia coli by modularized regulation of the membrane synthetic pathway and morphology engineering[J]. Chinese Journal of Biotechnology, 2018, 34(5): 703-711. | |
23 | ZHAO J, LI Q, SUN T, et al. Engineering central metabolic modules of Escherichia coli for improving β-carotene production[J]. Metabolic Engineering, 2013, 17: 42-50. |
24 | SHEN H, CHENG B, ZHANG Y, et al. Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis[J]. Metabolic Engineering, 2016, 38: 180-190. |
25 | PARK S Y, BINKLEY R M, KIM W J, et al. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity[J]. Metabolic Engineering, 2018(49): 105-115. |
26 | WANG W, HE P, ZHAO D, et al. Construction of Escherichia coli cell factories for crocin biosynthesis[J]. Microbial Cell Factories, 2019, 18(1):120. |
27 | XIE W, LV X, YE L, et al. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering[J]. Metabolic Engineering, 2015, 30: 69-78. |
28 | WANG Z, LI X, YU C, et al. Continuous self-cycling fermentation leads to economical lycopene production by Saccharomyces cerevisiae[J]. Frontiers in Bioengineering and Biotechnology, 2020(8): 420. |
29 | XIE W, YE L, LV X, et al. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2015, 28: 8-18. |
30 | ZHOU P, LI M, SHEN B, et al. Directed coevolution of β-carotene ketolase and hydroxylase and its application in temperature-regulated biosynthesis of astaxanthin[J]. Journal of Agricultural and Food Chemistry, 2019, 67(4): 1072-1080. |
31 | JIANG G, YANG Z, WANG Y, et al. Enhanced astaxanthin production in yeast via combined mutagenesis and evolution[J]. Biochemical Engineering Journal, 2020, 156: 107519. |
32 | CHAI F, WANG Y, MEI X, et al. Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2017, 16(1): 54. |
33 | LIU T, DONG C, QI M, et al. Construction of a stable and temperature-responsive yeast cell factory for crocetin biosynthesis using CRISPR-Cas9[J]. Frontiers in Bioengineering and Biotechnology, 2020(8): 653. |
34 | SONG T, WU N, WANG C, et al. Crocetin overproduction in engineered Saccharomyces cerevisiaevia tuning key enzymes coupled with precursor engineering[J]. Frontiers in Bioengineering and Biotechnology, 2020(8): 578005. |
35 | LUO Z, LIU N, LAZAR Z, et al. Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity[J]. Metabolic Engineering, 2020, 61: 344-351. |
36 | ZHANG X, WANG D, CHEN J, et al. Metabolic engineering of β-carotene biosynthesis in Yarrowia lipolytica[J]. Biotechnology Letters, 2020, 42(6): 945-956. |
37 | LARROUDE M, CELINSKA E, BACK A, et al. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene[J]. Biotechnology and Bioengineering, 2018, 115(2): 464-472. |
38 | TRAMONTIN L R R, KILDEGAARD K R, SUDARSAN S, et al. Enhancement of astaxanthin biosynthesis in oleaginous yeast Yarrowia lipolyticavia microalgal pathway[J]. Microorganisms, 2019, 7(10): 472. |
39 | ZELCBUCH L, ANTONOVSKY N, BAR-EVEN A, et al. Spanning high-dimensional expression space using ribosome-binding site combinatorics[J]. Nucleic Acids Research, 2013, 41(9): e98. |
40 | ÖZAYDıN B, BURD H, LEE T S, et al. Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production[J]. Metabolic Engineering, 2013, 15: 174-183. |
41 | OLSON M L, JOHNSON J, CARSWELL W F, et al. Characterization of an evolved carotenoids hyper-producer of Saccharomyces cerevisiae through bioreactor parameter optimization and Raman spectroscopy[J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43(10): 1355-1363. |
42 | REYES L H, GOMEZ J M, KAO K C. Improving carotenoids production in yeast via adaptive laboratory evolution[J]. Metabolic Engineering, 2014, 21: 26-33. |
43 | YANG C, GAO X, JIANG Y, et al. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli[J]. Metabolic Engineering, 2016, 37: 79-91. |
44 | YOSHIDA R, YOSHIMURA T, HEMMI H. Reconstruction of the “archaeal” mevalonate pathway from the methanogenic archaeon Methanosarcina mazei in Escherichia coli cells[J]. Applied and Environmental Microbiology, 2020, 86(6): e02889. |
45 | CHATZIVASILEIOU A O, WARD V, EDGAR S M, et al. Two-step pathway for isoprenoid synthesis[J]. Proc. Natl. Acad. Sci. USA, 2019, 116(2): 506-511. |
46 | CLOMBURG J M, QIAN S, TAN Z, et al. The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 26(166): 12810-12815. |
47 | CHEN Y, XIAO W, WANG Y, et al. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering[J]. Microbial Cell Factories, 2016, 15(1): 113. |
48 | KILDEGAARD K R, ADIEGO-PÉREZ B, DOMÉNECH BELDA D, et al. Engineering of Yarrowia lipolytica for production of astaxanthin[J]. Synthetic and Systems Biotechnology, 2017, 2(4): 287-294. |
49 | LIANG N, CHEN C, WANG Y, et al. Exploring catalysis specificity of phytoene dehydrogenase CrtI in carotenoid synthesis[J]. ACS Synthetic Biology, 2020, 9(7): 1753-1762. |
50 | LU Q, BU Y, LIU J. Metabolic engineering of Escherichia coli for producing astaxanthin as the predominant carotenoid[J]. Marine Drugs, 2017, 15(10): 296. |
51 | HENKE N A, HEIDER S A, PETERS-WENDISCH P, et al. Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum[J]. Marine Drugs, 2016, 14(7): 124. |
52 | WANG R, GU X, YAO M, et al. Engineering of β-carotene hydroxylase and ketolase for astaxanthin overproduction in Saccharomyces cerevisiae[J]. Frontiers of Chemical Science and Engineering, 2017, 11(1): 89-99. |
53 | ZHOU P, XIE W, LI A, et al. Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae[J]. Enzyme and Microbial Technology, 2017, 100: 28-36. |
54 | SWEETLOVE L J, FERNIE A R. The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation[J]. Nature Communications, 2018, 9(1): 2136. |
55 | KANG W, MA T, LIU M, et al. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux[J]. Nature Communications, 2019, 10(1): 4248. |
56 | XU X, TIAN L, TANG S, et al. Design and tailoring of an artificial DNA scaffolding system for efficient lycopene synthesis using zinc-finger-guided assembly[J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(2): 209-222. |
57 | YE L, ZHU X, WU T, et al. Optimizing the localization of astaxanthin enzymes for improved productivity[J]. Biotechnology for Biofuels, 2018, 11(1): 278. |
58 | QU J, CAO S, WEI Q, et al. Synthetic multienzyme complexes, catalytic nanomachineries for cascade biosynthesis in vivo[J]. ACS Nano, 2019, 13(9): 9895-9906. |
59 | NOGUEIRA M, ENFISSI E M A, WELSCH R, et al. Construction of a fusion enzyme for astaxanthin formation and its characterisation in microbial and plant hosts: a new tool for engineering ketocarotenoids[J]. Metabolic Engineering, 2019(52): 243-252. |
60 | ZHANG X, NIE M, CHEN J, et al. Multicopy integrants of crt genes and co-expression of AMP deaminase improve lycopene production in Yarrowia lipolytica[J]. Journal of Biotechnology, 2019, 289: 46-54. |
61 | WU X, LI B, ZHANG W, et al. Genome-wide landscape of position effects on heterogeneous gene expression in Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2017, 10(1): 189. |
62 | LARROUDE M, CELINSKA E, BACK A, et al. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene[J]. Biotechnology and Bioengineering, 2018, 115(2): 464-472. |
63 | SU B, SONG D, YANG F, et al. Engineering a growth-phase-dependent biosynthetic pathway for carotenoid production in Saccharomyces cerevisiae[J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(4/5): 383-393. |
64 | XU J, XU X, XU Q, et al. Efficient production of lycopene by engineered E. Coli strains harboring different types of plasmids[J]. Bioprocess and Biosystems Engineering, 2018, 41(4): 489-499. |
65 | YE L, HE P, LI Q, et al. Type Ⅱs restriction based combinatory modulation technique for metabolic pathway optimization[J]. Microbial Cell Factories, 2017, 16(1): 47. |
66 | COUSSEMENT P, BAUWENS D, MAERTENS J, et al. Direct combinatorial pathway optimization[J]. ACS Synthetic Biology, 2016, 6(2): 224-232. |
67 | LIAN J, JIN R, ZHAO H. Construction of plasmids with tunable copy numbers in Saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration[J]. Biotechnology and Bioengineering, 2016, 113(11): 2462-2473. |
68 | KANG C W, LIM H G, YANG J, et al. Synthetic auxotrophs for stable and tunable maintenance of plasmid copy number[J]. Metabolic Engineering, 2018, 48: 121-128. |
69 | YAMADA R, YAMAUCHI A, ANDO Y, et al. Modulation of gene expression by cocktail δ-integration to improve carotenoid production in Saccharomyces cerevisiae[J]. Bioresource Technology, 2018, 268: 616-621. |
70 | RONDA C, MAURY J, JAKOČIUNAS T, et al. CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2015, 14(1): 97. |
71 | HOU S, QIN Q, DAI J. Wicket: a versatile tool for the integration and optimization of exogenous pathways in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2018, 7(3): 782-788. |
72 | CUI Z, JIANG X, ZHENG H, et al. Homology-independent genome integration enables rapid library construction for enzyme expression and pathway optimization in Yarrowia lipolytica[J]. Biotechnology Bioengineering, 2019, 2(116): 354-363. |
73 | VOGL T, KICKENWEIZ T, PITZER J, et al. Engineered bidirectional promoters enable rapid multi-gene co-expression optimization[J]. Nature Communications, 2018, 9(1): 3589. |
74 | WU Z, ZHAO D, LI S, et al. Combinatorial modulation of initial codons for improved zeaxanthin synthetic pathway efficiency in Escherichia coli[J]. Microbiology Open, 2019, 8(12): e930. |
75 | JIN W, XU X, JIANG L, et al. Putative carotenoid genes expressed under the regulation of Shine-Dalgarno regions in Escherichia coli for efficient lycopene production[J]. Biotechnology Letters, 2015, 37(11): 2303-2310. |
76 | PFLEGER B F, PITERA D J, SMOLKE C D, et al. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes[J]. Nature Biotechnology, 2006, 24(8): 1027-1032. |
77 | LI X, TIAN G, SHEN H, et al. Metabolic engineering of Escherichia coli to produce zeaxanthin[J]. Journal of Industrial Microbiology & Biotechnology, 2015, 42(4): 627-636. |
78 | BLAZECK J, LIU L, REDDEN H, et al. Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach[J]. Applied and Environmental Microbiology, 2011, 77(22): 7905-7914. |
79 | BLAZECK J, GARG R, REED B, et al. Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters[J]. Biotechnology and Bioengineering, 2012, 109(11): 2884-2895. |
80 | NASERI G, BEHREND J, RIEPER L, et al. COMPASS for rapid combinatorial optimization of biochemical pathways based on artificial transcription factors[J]. Nature Communications, 2019, 10(1): 2615. |
81 | CUPERUS J T, LO R S, SHUMAKER L, et al. A tetO toolkit to alter expression of genes in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2015, 4(7): 842-852. |
82 | GUO Y, DONG J, ZHOU T, et al. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae[J]. Nucleic Acids Research, 2015, 43(13): e88. |
83 | WU Y, ZHU R, MITCHELL L A, et al. In vitro DNA SCRaMbLE[J]. Nature Communications, 2018, 9(1): 1935. |
84 | LIU W, LUO Z, WANG Y, et al. Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods[J]. Nature Communications, 2018, 9(1): 1936. |
85 | QI D, JIN J, LIU D, et al. In vitro and in vivo recombination of heterologous modules for improving biosynthesis of astaxanthin in yeast[J]. Microbial Cell Factories, 2020, 19(1): 103. |
86 | AJIKUMAR P K, XIAO W H, TYO K E J, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli[J]. Science, 2010, 330(6000): 70-74. |
87 | ZHANG C, SEOW V Y, CHEN X, et al. Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in Escherichia coli[J]. Nature Communications, 2018, 9(1): 1858. |
88 | LI N, HAN Z, O'DONNELL T J, et al. Production and excretion of astaxanthin by engineered Yarrowia lipolytica using plant oil as both the carbon source and the biocompatible extractant[J]. Appl. Microbiol. Biotechnol., 2020, 104(16): 6977-6989. |
89 | GOTO S, KOGURE K, ABE K, et al. Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin[J]. Biochim. Biophys. Acta, 2001, 1512(2): 251-258. |
90 | VERWAAL R, JIANG Y, WANG J, et al. Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response[J]. Yeast, 2010, 27(12): 983-998. |
91 | ZHOU P, XIE W, YAO Z, et al. Development of a temperature-responsive yeast cell factory using engineered Gal4 as a protein switch[J]. Biotechnology and Bioengineering, 2018, 115(5): 1321-1330. |
92 | DOSHI R, NGUYEN T, CHANG G. Transporter-mediated biofuel secretion[J]. Proceedings of the National Academy of Sciences, 2013, 110(19): 7642-7647. |
93 | WU T, LI S, YE L, et al. Engineering an artificial membrane vesicle trafficking system (AMVTS) for the excretion of β-carotene in Escherichia coli[J]. ACS Synthetic Biology, 2019, 8(5): 1037-1046. |
94 | WU T, YE L, ZHAO D, et al. Membrane engineering: a novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli[J]. Metabolic Engineering, 2017, 43(A): 85-91. |
95 | WU T, YE L, ZHAO D, et al. Engineering membrane morphology and manipulating synthesis for increased lycopene accumulation in Escherichia coli cell factories[J]. Biotech, 2018, 8(6): 269. |
96 | LIU Y, LOW Z J, MA X, et al. Using biopolymer bodies for encapsulation of hydrophobic products in bacterium[J]. Metabolic Engineering, 2020, 61: 206-214. |
97 | CHEN Y, WANG Y, LIU M, et al. Primary and secondary metabolic effects of a key gene deletion (ΔYPL062W) in metabolically engineered terpenoid-producing Saccharomyces cerevisiae[J]. Appl. Environ. Microbiol., 2019, 85(7): e01990. |
98 | WANG M, LIU G, LIU H, et al. Engineering global transcription to tune lipophilic properties in Yarrowia lipolytica[J]. Biotechnology for Biofuels, 2018, 11(1): 115. |
99 | HUANG L, PU Y, YANG X, et al. Engineering of global regulator cAMP receptor protein (CRP) in Escherichia coli for improved lycopene production[J]. Journal of Biotechnology, 2015, 199: 55-61. |
100 | 张雪, 张晓菲, 王立言, 等. 常压室温等离子体生物诱变育种及其应用研究进展[J]. 化工学报, 2014, 65(7): 2676-2684. |
ZHANG Xue, ZHANG Xiaofei, WANG Liyan, et al. Recent progress on atmospheric and room temperature plasma mutation breeding technology and its applications[J]. CIESC Journal, 2014, 65(7): 2676-2684. | |
101 | JIN J, WANG Y, YAO M, et al. Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering[J]. Biotechnology for Biofuels, 2018, 11(1): 215-230. |
102 | WANG H H, ISAACS F J, CARR P A, et al. Programming cells by multiplex genome engineering and accelerated evolution[J]. Nature, 2009, 460(7257): 894-898. |
103 | BARBIERI E M, MUIR P, AKHUETIEONI B O, et al. Precise editing at DNA replication forks enables multiplex genome engineering in eukaryotes[J]. Cell, 2017, 171(6): 1453-1467. |
104 | LI J, SHEN J, SUN Z, et al. Discovery of several novel targets that enhance β-carotene production in Saccharomyces cerevisiae[J]. Frontiers in Microbiology, 2017, 8: 1116. |
105 | BEUTTLER H, HOFFMANN J, JESKE M, et al. Biosynthesis of zeaxanthin in recombinant Pseudomonas putida[J]. Applied Microbiology and Biotechnology, 2011, 89(4): 1137-1147. |
106 | LIAN J, HAMEDIRAD M, HU S, et al. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system[J]. Nature Communications, 2017, 8(1): 1688. |
107 | LIU D, LIU H, QI H, et al. Constructing yeast chimeric pathways to boost lipophilic terpene synthesis[J]. ACS Synthetic Biology, 2019, 8(4): 724-733. |
108 | JIA B, WU Y, LI B Z, et al. Precise control of SCRaMbLE in synthetic haploid and diploid yeast[J]. Nature Communications, 2018, 9(1): 1933. |
109 | WANG J, XIE Z X, MA Y, et al. Ring synthetic chromosome V SCRaMbLE[J]. Nature Communications, 2018, 9(1): 3783. |
110 | SUN X, REN L, BI Z, et al. Development of a cooperative two-factor adaptive-evolution method to enhance lipid production and prevent lipid peroxidation in Schizochytrium sp.[J]. Biotechnology for Biofuels, 2018, 11(1): 65. |
111 | SUN X, REN L, JI X, et al. Adaptive evolution of Schizochytrium sp. by continuous high oxygen stimulations to enhance docosahexaenoic acid synthesis[J]. Bioresource Technology, 2016, 211: 374-381. |
112 | TILLICH U M, WOLTER N, FRANKE P, et al. Screening and genetic characterization of thermo-tolerant Synechocystis sp.PCC6803 strains created by adaptive evolution[J]. BMC Biotechnology, 2014, 14(1): 66. |
113 | PERRINEAU M, ZELZION E, GROSS J, et al. Evolution of salt tolerance in a laboratory reared population of Chlamydomonas reinhardtii[J]. Environmental Microbiology, 2014, 16(6): 1755-1766. |
114 | LIN Y, CHANG J, LIN H, et al. Metabolic engineering a yeast to produce astaxanthin[J]. Bioresource Technology, 2017, 245: 899-905. |
115 | HEIDER S A E, WOLF N, HOFEMEIER A, et al. Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum[J]. Frontiers in Bioengineering and Biotechnology, 2014, 2: 28. |
116 | ZHANG X, WANG D, DUAN Y, et al. Production of lycopene by metabolically engineered Pichia pastoris[J]. Biosci. Biotechnol. Biochem., 2020, 84(3): 463-470. |
117 | HASUNUMA T, TAKAKI A, MATSUDA M, et al. Single-stage astaxanthin production enhances the nonmevalonate pathway and photosynthetic central metabolism in Synechococcus sp. PCC 7002[J]. ACS Synthetic Biology, 2019, 8(12): 2701-2709. |
118 | YE X, ALBABILI S, KLOTI A, et al. Engineering the provitamin a (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm[J]. Science, 2000, 287(5451): 303-305. |
119 | PAINE J A, SHIPTON C A, CHAGGAR S, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin a content[J]. Nature Biotechnology, 2005, 23(4): 482-487. |
120 | ZHU Q, ZENG D, YU S, et al. From golden rice to aSTARice: bioengineering astaxanthin biosynthesis in rice endosperm[J]. Molecular Plant, 2018, 11(12): 1440-1448. |
121 | DIAO J, SONG X, ZHANG L, et al. Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin[J]. Metabolic Engineering, 2020, 61: 275-287. |
122 | UMENO D, TOBIAS A V, ARNOLD F H. Diversifying carotenoid biosynthetic pathways by directed evolution[J]. Microbiol. Mol. Biol. Rev., 2005, 69(1): 51-78. |
123 | FURUBAYASHI M, IKEZUMI M, TAKAICHI S, et al. A highly selective biosynthetic pathway to non-natural C50 carotenoids assembled from moderately selective enzymes[J]. Nature Communications, 2015, 6(1): 7534. |
124 | LI L, FURUBAYASHI M, WANG S, et al. Genetically engineered biosynthetic pathways for nonnatural C60 carotenoids using C5-elongases and C50-cyclases in Escherichia coli[J]. Scientific Reports, 2019, 9: 2982. |
125 | DRUMMOND L, KSCHOWAK M J, BREITENBACH J, et al. Expanding the isoprenoid building block repertoire with an IPP methyltransferase from Streptomyces monomycini[J]. ACS Synthetic Biology, 2019, 8(6): 1303-1313. |
126 | LI L, FURUBAYASHI M, OTANI Y, et al. Nonnatural biosynthetic pathway for 2-hydroxylated xanthophylls with C50-carotenoid backbone[J]. Journal of Bioscience and Bioengineering, 2019, 128(4): 438-444. |
127 | ZENG W, GUO L, XU S, et al. High-throughput screening technology in industrial biotechnology[J]. Trends in Biotechnology, 2020, 38(8): 888-906. |
128 | EXLEY K, REYNOLDS C R, SUCKLING L, et al. Utilising datasheets for the informed automated design and build of a synthetic metabolic pathway[J]. Journal of Biological Engineering, 2019, 8(13): 1-10. |
129 | ZHOU Y, LI G, DONG J, et al. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2018, 47: 294-302. |
130 | HAMEDIRAD M, CHAO R, WEISBERG S, et al. Towards a fully automated algorithm driven platform for biosystems design[J]. Nature Communications, 2019, 10(1): 5150. |
[1] | GAO Cong, CHEN Chenghu, CHEN Xiulai, LIU Liming. Progress and challenges of engineering microorganisms to produce biobased monomers [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4123-4135. |
[2] | GUO Feng, ZHANG Shangjie, JIANG Yujia, JIANG Wankui, XIN Fengxue, ZHANG Wenming, JIANG Min. Biotransformation of one-carbon resources by yeast [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 30-39. |
[3] | TAO Yuxuan, ZHANG Shangjie, JING Yiwen, XIN Fengxue, DONG Weiliang, ZHOU Jie, JIANG Yujia, ZHANG Wenming, JIANG Min. Recent advances in the construction strategy of methylotrophic Escherichia coli [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3932-3941. |
[4] | SUN Wentao, LI Chun. Design and construction of microbial cell factory for biosynthesis of plant natural products [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1202-1214. |
[5] | GUO Liang, GAO Cong, ZHANG Li, CHEN Xiulai, LIU Liming. Advances in the suitability of artificial metabolic pathways [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1252-1261. |
[6] | LIU Weibing, YE Bangce. Progress of synthetic biology research and biological manufacturing of actinomycetes polyketides [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1226-1237. |
[7] | MA Yueyuan, CHEN Jinchun, CHEN Guoqiang. Halophilic microorganisms as microbial chassis: applications and prospects [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1178-1186. |
[8] | GAO Cong, GUO Liang, HU Guipeng, CHEN Xiulai, LIU Liming. Advances of metabolic flux regulation in microbial cell factories [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6807-6817. |
[9] | Chen WANG, Meng ZHAO, Mingzhu DING, Ying WANG, Mingdong YAO, Wenhai XIAO. Application of biological scaffold system on synthetic biology [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4557-4567. |
[10] | Pengcheng CHANG, Yang YU, Ying WANG, Chun LI. Combinatorial regulation strategies for efficient synthesis of terpenoids in Saccharomyces cerevisiae [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 598-605. |
[11] | YANG Kun, WANG Ying, LI Chun. Cell transporter protein and engineered applications [J]. Chemical Industry and Engineering Progress, 2017, 36(04): 1410-1417. |
[12] | LIU Dingyu, MENG Jiao, WANG Zhiwen, CHEN Tao, ZHAO Xueming. Progress and application on multivariate modular metabolic engineering in metabolic engineering [J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3619-3626. |
[13] | XIAO Wenhai, ZHOU Sijie, WANG Ying, YUAN Yingjin. How to make biology more “engineering” [J]. Chemical Industry and Engineering Progree, 2016, 35(06): 1827-1836. |
[14] | WAN Tao1,QI Haishan1,CHEN Yunlin2,WEN Jianping1. Research progress of biosynthesis of daptomycin and its derivative [J]. Chemical Industry and Engineering Progree, 2012, 31(07): 1581-1586. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |