Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 3480-3488.DOI: 10.16085/j.issn.1000-6613.2020-1469
• Resources and environmental engineering • Previous Articles Next Articles
TIAN Tingting1,2(), LI Chaoyang1,2, WANG Shaodong2, LU Hui2, LI Xindong1(), MAO Yanli2, SONG Zhongxian2, ZHU Xinfeng2()
Received:
2020-07-29
Revised:
2020-10-19
Online:
2021-06-22
Published:
2021-06-06
Contact:
LI Xindong,ZHU Xinfeng
田婷婷1,2(), 李朝阳1,2, 王召东2, 陆慧2, 李新冬1(), 毛艳丽2, 宋忠贤2, 朱新锋2()
通讯作者:
李新冬,朱新锋
作者简介:
田婷婷(1996—),女,硕士研究生,研究方向为污水处理技术。E-mail:基金资助:
CLC Number:
TIAN Tingting, LI Chaoyang, WANG Shaodong, LU Hui, LI Xindong, MAO Yanli, SONG Zhongxian, ZHU Xinfeng. Research progress of transition metal activated persulfate to degrade organic wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3480-3488.
田婷婷, 李朝阳, 王召东, 陆慧, 李新冬, 毛艳丽, 宋忠贤, 朱新锋. 过渡金属活化过硫酸盐降解有机废水技术研究进展[J]. 化工进展, 2021, 40(6): 3480-3488.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1469
活化方式 | 机理 | 主要的自由基种类 | 特点 | 参考文献 |
---|---|---|---|---|
热活化 | S2O SO SO | ·OH和SO | 氧化性强,需要高温环境;在中性或碱性下反应速率高,污水中存在阴离子会影响污染物的降解 | [ |
碱活化 | 2S2O | 还原剂(超氧化物)和SO | 污染物在24h才能被完全降解,反应时间过长,且需要的过硫酸盐和碱的含量很大 | [ |
UV活化 | S2O | ·OH和SO | 受pH的影响较大,会随着污水的成分不同产生不同的副产物,增加二次污染 | [ |
以碳为基础的材料活化 | 利用以碳为基础的材料具有比表面积大、吸附性能高、化学稳定性好等特点将金属离子负载在其表面增加活性位点,提高污染物的降解率 | SO | 催化剂稳定性好,重复使用率高,适用pH范围广,可以降解的污染物种类多,但催化剂的制备过程复杂,制作成本高 | [ |
电活化 | 在电流的作用下,水被电解产生·OH,附着在电极表面的表面活性剂得失电子,两者共同降解污染物 | SO | 受电流密度影响较大,阳极材料受限制,非活性阳极材料需要加入可以产生高活性物质的表面活性剂,成本高 | [ |
超声活化 | 超声波产生的气蚀、高温高压促使过硫酸盐中的O—O键断裂,产生SO | SO | 活化过程受超声功率、频率、pH、温度的影响较大;对处理大量的实际污水存在困难 | [ |
活化方式 | 机理 | 主要的自由基种类 | 特点 | 参考文献 |
---|---|---|---|---|
热活化 | S2O SO SO | ·OH和SO | 氧化性强,需要高温环境;在中性或碱性下反应速率高,污水中存在阴离子会影响污染物的降解 | [ |
碱活化 | 2S2O | 还原剂(超氧化物)和SO | 污染物在24h才能被完全降解,反应时间过长,且需要的过硫酸盐和碱的含量很大 | [ |
UV活化 | S2O | ·OH和SO | 受pH的影响较大,会随着污水的成分不同产生不同的副产物,增加二次污染 | [ |
以碳为基础的材料活化 | 利用以碳为基础的材料具有比表面积大、吸附性能高、化学稳定性好等特点将金属离子负载在其表面增加活性位点,提高污染物的降解率 | SO | 催化剂稳定性好,重复使用率高,适用pH范围广,可以降解的污染物种类多,但催化剂的制备过程复杂,制作成本高 | [ |
电活化 | 在电流的作用下,水被电解产生·OH,附着在电极表面的表面活性剂得失电子,两者共同降解污染物 | SO | 受电流密度影响较大,阳极材料受限制,非活性阳极材料需要加入可以产生高活性物质的表面活性剂,成本高 | [ |
超声活化 | 超声波产生的气蚀、高温高压促使过硫酸盐中的O—O键断裂,产生SO | SO | 活化过程受超声功率、频率、pH、温度的影响较大;对处理大量的实际污水存在困难 | [ |
1 | GAO Yuqiong, GAO Naiyun, CHU Wenhai, et al. UV-activated persulfate oxidation of sulfamethoxypyridazine: kinetics, degradation pathways and impact on DBP formation during subsequent chlorination[J]. Chemical Engineering Journal, 2019, 370: 706-715. |
2 | TANG Qingwen, AN Xiaoqiang, LAN Huachun, et al. Polyoxometalates/TiO2 photocatalysts with engineered facets for enhanced degradation of bisphenol A through persulfate activation[J]. Applied Catalysis B: Environmental, 2020, 268: 118-394. |
3 | WANG Qiongfang, SHAO Yisheng, GAO Naiyun, et al. Impact of zero valent iron/persulfate preoxidation on disinfection byproducts through chlorination of alachlor[J]. Chemical Engineering Journal, 2020, 380: 122-435. |
4 | HAO Feifei, GUO Weilin, WANG Anqi, et al. Intensification of sonochemical degradation of ammonium perfluorooctanoate by persulfate oxidant[J]. Ultrasonics Sonochemistry, 2014, 21 (2): 554-558. |
5 | Tugba OLMEZ-HANCI, Idil ARSLAN-ALATON. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol[J]. Chemical Engineering Journal, 2013, 224: 10-16. |
6 | YUAN Ruixia, RAMJAUN Sadiqua N, WANG Zhaohui, et al.Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds[J]. Journal Hazard Mater, 2011, 196: 173-179. |
7 | WORDOFA Dawit N, WALKER Sharon L, LIU Haizhou. Sulfate radical-Induced disinfection of pathogenic escherichia coli O157: H7 via iron-activated persulfate[J]. Environmental Science and Technology Letters, 2017, 4 (4): 154-160. |
8 | GUO Wanqian, ZHAO Qi, DU Juanshan, et al. Enhanced removal of sulfadiazine by sulfidated ZVI activated persulfate process: performance, mechanisms and degradation pathways[J]. Chemical Engineering Journal, 2020, 388: 124-303. |
9 | FANG Guodong, DIONYSIOU Dionysios D., WANG Yu, et al. Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics[J]. Journal Hazard Mater, 2012, 227/228: 394-401. |
10 | ZHEN Guangyin, TAN Yujie, WU Taipu, et al. Strengthened dewaterability of coke-oven plant oily sludge by altering extracellular organics using Fe()-activated persulfate oxidation[J]. Sci. Total. Environ., 2019, 688: 1155-1161. |
11 | ZHOU Yaoyu, XIANG Yujia, HE Yangzhuo, et al. Applications and factors influencing of the persulfate-based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds[J]. Journal Hazard Mater, 2018, 359: 396-407. |
12 | QI Hang, HUNG Yencon. Effectiveness of activated persulfate in removal of foodborne pathogens from romaine lettuce[J]. Food Control, 2019, 106: 106-708. |
13 | YOUSEFI Nader, POURFADAKARI Sudabeh, ESMAEILI Shirin, et al. Mineralization of high saline petrochemical wastewater using sonoelectro-activated persulfate: degradation mechanisms and reaction kinetics[J]. Microchem Journal, 2019, 147: 1075-1082. |
14 | 付冬彬, 陈盈盈, 王广生, 等.超声联合热活化过硫酸盐处理垃圾渗滤液[J].水处理技术, 2019, 45(12): 125-128. |
FU Dongbin, CHEN Yingying, WANG Guangsheng, et al. Treatment of landfill leachate with ultrasonic and thermal activation persulfate[J].Water Treatment Technology, 2019, 45(12): 125-128. | |
15 | 徐西蒙, 宗绍燕, 刘丹. 钢渣碱活化过硫酸盐降解双酚A[J].中国环境科学, 2019, 39(7): 2889-2895. |
XU Ximeng, ZONG Shaoyan, LIU Dan. Alkali activation of steel slag to degrade bisphenol A by persulfate[J].China Environmental Science, 2019, 39(7): 2889-2895. | |
16 | 薛洪海, 高斯屿, 付依, 等.紫外活化过硫酸盐技术去除水中人工甜味剂的研究进展[J].科学技术与工程, 2019, 19(32): 17-23. |
XUE Honghai, GAO Siyu, FU Yi, et al.Research progress on the removal of artificial sweeteners in water by ultraviolet activated persulfate technology[J].Science Technology and Engineering, 2019, 19(32): 17-23. | |
17 | 肖鹏飞, 安璐, 韩爽.炭质材料在活化过硫酸盐高级氧化技术中的应用进展[J].化工进展, 2020, 39(8): 3304-3317. |
XIAO Pengfei, AN Lu, HAN Shuang.The application progress of carbonaceous materials in activated persulfate advanced oxidation technology[J].Chemical Industry and Engineering Progress, 2020, 39(8): 3304-3317. | |
18 | WANG Jianlong, WANG Shizong.Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. |
19 | MALIK Ritu, RANA Pawan S, TOMER Vijay K, et al.Nano gold supported on ordered mesoporous WO3/SBA-15 hybrid nanocomposite for oxidative decolorization of azo dye[J]. Microporous and Mesoporous Materials, 2016, 225: 245-254. |
20 | OUYANG Mengyun, LI Xiaoming, XU Qiuxiang, et al. Heterogeneous activation of persulfate by Ag doped BiFeO3 composites for tetracycline degradation[J]. Journal of Colloid and Interface Science, 2020, 566: 33-45. |
21 | FENG Yong, LEE Poheng, WU Deli, et al.Surface-bound sulfate radical-dominated degradation of 1,4-dioxane by alumina-supported palladium (Pd/Al2O3) catalyzed peroxymonosulfate[J]. Water Research, 2017, 120: 12-21. |
22 | MATTA Roger, YOUNES Hicham, HANNA Rita, et al. Sulfate radicals mediated oxidation of amoxicillin: optimization of key parameters[J]. Journal Environ Manage, 2019, 245: 375-383. |
23 | ZHANG Wei, TANG Gang, YAN Jingwei, et al. The decolorization of methyl orange by persulfate activated with natural vanadium-titanium magnetite[J]. Applied Surface Science, 2020, 509: 144-886. |
24 | HEIDARPOUR Hamed, PADERVAND Mohsen, SOLTANIEH Mohammad, et al. Enhanced decolorization of Rhodamine B solutionthrough simultaneous photocatalysis and persulfate activation over Fe/C3N4 photocatalyst[J]. Chemical Engineering Research and Design, 2020, 153: 709-720. |
25 | CHEN Ruxia, YIN Hua, PENG Hui, et al.Removal of triphenyl phosphate by nanoscale zerovalent iron (nZVI) activated bisulfite: performance, surface reaction mechanism and sulfate radical-mediated degradation pathway[J]. Environmental Pollution, 2020, 260: 113-983. |
26 | SAPUTRA Edy, MUHAMMAD Syaifullah, SUN Hongqi, et al.Manganese oxides at different oxidation states for heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions[J]. Applied Catalysis B: Environmental, 2013, 142/143: 729-735. |
27 | WU Hong, XU Xinyuan, SHI Lei, et al.Manganese oxide integrated catalytic ceramic membrane for degradation of organic pollutants using sulfate radicals[J]. Water Research, 2019, 167: 115-110. |
28 | XIE Yi, LI Panyu, ZENG Yu, et al. Thermally treated fungal manganese oxides for bisphenol A degradation using sulfate radicals[J]. Chemical Engineering Journal, 2018, 335: 728-736. |
29 | SHAH Noor S. ALI KHAN Javed, SAYED Murtaza,et al.Hydroxyl and sulfate radical mediated degradation of ciprofloxacin using nano zerovalent manganese catalyzed S2O82-[J]. Chemical Engineering Journal, 2019, 356: 199-209. |
30 | LUO Rui, LIU Chao, LI Jiansheng, et al. Nanostructured CoP: an efficient catalyst for degradation of organic pollutants by activating peroxymonosulfate[J]. Journal Hazard Mater, 2017, 329: 92-101. |
31 | SAPUTRA Edy, MUHAMMAD Syaifullah, SUN Hongqi, et al. Red mud and fly ash supported Co catalysts for phenol oxidation[J]. Catal Today, 2012, 190(1): 68-72. |
32 | CHEN Zhiping, BI Sijing, ZHAO Guangyi, et al.Enhanced degradation of triclosan by cobalt manganese spinel-type oxide activated peroxymonosulfate oxidation process via sulfate radicals and singlet oxygen: mechanisms and intermediates identification[J]. Sci. Total. Environ., 2020, 711: 134-715. |
33 | WEI Gaoling, LIANG Xiaoliang, HE Zisen, et al.Heterogeneous activation of Oxone by substituted magnetites Fe3-xMxO4 (Cr, Mn, Co, Ni) for degradation of acid orange Ⅱ at neutral pH[J]. Journal of Molecular Catalysis A: Chemical, 2015, 398: 86-94. |
34 | LIU Zizheng, YANG Shaojie, YUAN Yanan, et al. A novel heterogeneous system for sulfate radical generation through sulfite activation on a CoFe2O4 nanocatalyst surface[J]. Journal of Hazardous Materials, 2017, 324: 583-592. |
35 | FENG Yong, LIU Jinhua, WU Deli, et al. Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation[J]. Chemical Engineering Journal, 2015, 280: 514-524. |
36 | ALI M B, BARRAS A, ADDAD A, et al. Co2SnO4 nanoparticles as a high performance catalyst for oxidative degradation of Rhodamine B dye and pentachlorophenol by activation of peroxymonosulfate[J]. Physical Chemistry Chemical Physics, 2017, 19(9): 6569-6578. |
37 | ZHANG Wenwen, SU Yi, ZHANG Xuemei, et al. Facile synthesis of porous NiCo2O4 nanoflakes as magnetic recoverable catalysts towards the efficient degradation of RhB[J]. RSC Advances, 2016, 6(69): 64626-64633. |
38 | CHEN Liwei, DING Dahu, LIU Chao, et al.Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: a comparative study and mechanistic consideration[J]. Chemical Engineering Journal, 2018, 334: 273-284. |
39 | PANG Ya, ZHOU Yaoyu, LUO Kun, et al.Activation of persulfate by stability-enhanced magnetic graphene oxide for the removal of 2,4-dichlorophenol[J]. Sci. Total. Environ., 2020, 707: 135656. |
40 | JIANG Zhi, ZHAO Jie, LI Chaofang, et al. Strong synergistic effect of Co3O4 encapsulated in nitrogen-doped carbon nanotubes on the nonradical-dominated persulfate activation[J]. Carbon, 2020, 158: 172-183. |
41 | MA Qiuling, NENGZI Lichao, LI Bo, et al. Heterogeneously catalyzed persulfate with activated carbon coated with CoFe layered double hydroxide (AC@CoFe-LDH) for the degradation of lomefloxacin[J]. Separation and Purification Technology, 2020, 235, 116204. |
42 | MA Qiuling, NENGZI Lichao, ZHANG Xinyi, et al. Enhanced activation of persulfate by AC@CoFe2O4 nanocomposites for effective removal of lomefloxacin[J]. Separation and Purification Technology, 2020, 233: 115-978. |
43 | DANGWANG DIKDIM Jean Marie, GONG Yan, NOUMI Guy Bertrand, et al. Peroxymonosulfate improved photocatalytic degradation of atrazine by activated carbon/graphitic carbon nitride composite under visible light irradiation[J]. Chemosphere2019, 217: 833-842. |
44 | WANG Xiangyu, WANG Anqi, MA Jun, Visible-light-driven photocatalytic removal of antibiotics by newly designed C3N4@MnFe2O4-graphene nanocomposites[J]. Journal of Hazardous Materials, 2017, 336: 81-92. |
45 | KHAN Aimal, LIAO Zhuwei, LIU Yong, et al.Synergistic degradation of phenols using peroxymonosulfate activated by CuO-Co3O4@MnO2 nanocatalyst[J]. Journal of Hazardous Materials, 2017, 329: 262-271. |
46 | ZHANG Yuanchun, ZHANG Qian, HONG Junming, Sulfate radical degradation of acetaminophen by novel iron-copper bimetallic oxidation catalyzed by persulfate: mechanism and degradation pathways[J]. Applied Surface Science, 2017, 422: 443-451. |
47 | ZHANG Xiaofeng, LIN Qintie, LUO Haoyu, et al. Activation of persulfate with 3D urchin-like CoO-CuO microparticles for DBP degradation: a catalytic mechanism study[J]. Sci Total Environ, 2019, 655: 614-621. |
48 | CHEN Liwei, ZUO Xu, YANG Shengjiong, et al. Rational design and synthesis of hollow Co3O4@Fe2O3 core-shell nanostructure for the catalytic degradation of norfloxacin by coupling with peroxymonosulfate[J]. Chemical Engineering Journal, 2019, 359: 373-384. |
49 | LIU Yang, GUO Hongguang, ZHANG Yongli, et al. Heterogeneous activation of persulfate for Rhodamine B degradation with 3D flower sphere-like BiOI/Fe3O4 microspheres under visible light irradiation[J]. Separation and Purification Technology, 2018, 192: 88-98. |
50 | NGUYEN Thanh Binh, DOONG Rueyan, HUANG C P, et al.Activation of persulfate by CoO nanoparticles loaded on 3D mesoporous carbon nitride (CoO@meso-CN) for the degradation of Methylene blue (MB)[J]. Sci. Total. Environ., 2019, 675: 531-541. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[9] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[10] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[11] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[13] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |