1 |
WANG Keying, WU Meng, SUN Yongping, et al. Resource abundance, industrial structure, and regional carbon emissions efficiency in China[J]. Resources Policy, 2019, 60: 203-214.
|
2 |
SONG Malin, WANG Jianlin, ZHAO Jiajia. Coal endowment, resource curse, and high coal-consuming industries location: analysis based on large-scale data[J]. Resources, Conservation and Recycling, 2018, 129: 333-344.
|
3 |
ZHANG Lei, HE Chaonan, YANG Anquan, et al. Modeling and implication of coal physical input-output table in China—based on clean coal concept[J]. Resources, Conservation and Recycling, 2018, 129: 355-365.
|
4 |
MATHEWS Jonathan P, CHAFFEE Alan L. The molecular representations of coal—a review[J]. Fuel, 2012, 96: 1-14.
|
5 |
崔馨, 严煌, 赵培涛. 煤分子结构模型构建及分析方法综述[J]. 中国矿业大学学报, 2019, 48(4): 704-717.
|
|
CUI Xin, YAN Hang, ZHAO Peitao. A review on the model construction and analytical methods of coal molecular structure[J]. Journal of China University of Mining & Technology, 2019, 48(4): 704-717.
|
6 |
MATHEWS Jonathan P, DUIN Adri C T VAN, CHAFFEE Alan L. The utility of coal molecular models[J]. Fuel Processing Technology, 2011, 92(4): 718-728.
|
7 |
LIU Jiaxun, JIANG Yuanzhen, YAO Wang, et al. Molecular characterization of Henan anthracite coal[J]. Energy & Fuels, 2019, 33(7): 6215-6225.
|
8 |
WANG Jieping, LI Guangyue, GUO Rui, et al. Theoretical and experimental insight into coal structure: establishing a chemical model for Yuzhou lignite[J]. Energy & Fuels, 2016, 31(1): 124-132.
|
9 |
LIN Hualin, LI Kejian, ZHANG Xuwen, et al. Structure characterization and model construction of Indonesian brown coal[J]. Energy & Fuels, 2015, 30(5): 3809-3814.
|
10 |
柏静儒, 陈嘉彬, 李坤, 等. 印尼油砂沥青组成及化学结构分析[J]. 化工进展, 2019, 38(7): 3117-3125.
|
|
BAI Jingru, CHEN Jiabin, LI Kun, et al. Analysis of composition and chemical structure of Indonesian oil sands bitumen[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3117-3125.
|
11 |
YAN Guochao, REN Gang, BAI Longjian, et al. Molecular model construction and evaluation of Jincheng anthracite[J]. ACS Omega, 2020, 5(19): 10663-10670.
|
12 |
FAN Zheyong, CHEN Wei, VIERIMAA Ville, et al. Efficient molecular dynamics simulations with many-body potentials on graphics processing units[J]. Computer Physics Communications, 2017, 218: 10-16.
|
13 |
Fidel CASTRO-MARCANO, LOBODIN Vladislav V, RODGERS Ryan P, et al. A molecular model for Illinois No. 6 argonne premium coal: moving toward capturing the continuum structure[J]. Fuel, 2012, 95: 35-49.
|
14 |
SALMON Elodie, DUIN Adri C VAN.T, LORANT François,et al. Early maturation processes in coal. Part 2: reactive dynamics simulations using the ReaxFF reactive force field on Morwell brown coal structures[J]. Organic Geochemistry, 2009, 40(12): 1195-1209.
|
15 |
CHEN Bo, DIAO Zhijun, LU Haiyun. Using the ReaxFF reactive force field for molecular dynamics simulations of the spontaneous combustion of lignite with the hatcher lignite model[J]. Fuel, 2014, 116: 7-13.
|
16 |
ZHENG Mo, LI Xiaoxia, WANG Meijun, et al. Dynamic profiles of tar products during Naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation[J]. Fuel, 2019, 253: 910-920.
|
17 |
XU Fang, PAN Shuo, LIU Chunguang, et al. Construction and evaluation of chemical structure model of Huolinhe lignite using molecular modeling[J]. RSC Advances, 2017, 7(66): 41512-41519.
|
18 |
XU Fang, LIU Hui, WANG Qing, et al. Study of non-isothermal pyrolysis mechanism of lignite using ReaxFF molecular dynamics simulations[J]. Fuel, 2019, 256: 115884.
|
19 |
HONG Dikun, GUO Xin. Molecular dynamics simulations of Zhundong coal pyrolysis using reactive force field[J]. Fuel, 2017, 210: 58-66.
|
20 |
GAO Mingjie, LI Xiaoxia, GUO Li. Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics[J]. Fuel Processing Technology, 2018, 178: 197-205.
|
21 |
GAO Mingjie, LI Xiaoxia, REN Chunxing, et al. Construction of a multicomponent molecular model of Fugu coal for ReaxFF-MD pyrolysis simulation[J]. Energy & Fuels, 2019, 33(4): 2848-2858.
|
22 |
周星宇, 曾凡桂, 相建华, 等. 马脊梁镜煤有机质大分子模型构建及分子模拟[J]. 化工学报, 2019, 70: 1-14.
|
|
ZHOU Xingyu, ZENG Fangui, XIANG Jianhua, et al. Macromolecular model construction and molecular simulation of organic matter in Majiliang vitrain[J]. CIESC Journal, 2019, 70: 1-14.
|
23 |
FENG Wei, LI Zhuangmei, GAO Hongfeng, et al. Understanding the molecular structure of HSW coal at atomic level: a comprehensive characterization from combined experimental and computational study[J]. Green Energy & Environment, 2020, doi: 10.1016/j.gee.2020.03.013.
|
24 |
DUIN Adri CT VAN, DASGUPTA Siddharth, LORANT Francois, et al. ReaxFF: a reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409.
|
25 |
CHENOWETH Kimberly, DUIN Adri CT VAN, GODDARD William A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. The Journal of Physical Chemistry A, 2008, 112(5): 1040-1053.
|
26 |
DUIN Adri C T VAN, GODDARD William A, SCHOOT H VAN, et al. ReaxFF 2017[C]. SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, .
|
27 |
FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[C]. Gaussian, Inc, Pittsburgh P A, 2009.
|
28 |
李壮楣, 王艳美, 李平, 等. 宁东红石湾煤大分子模型构建及量子化学计算[J]. 化工学报, 2018, 69(5): 2208-2216.
|
|
LI Zhuangmei, WANG Yanmei, LI Ping, et al. Macromolecule model construction and quantum chemical calculation of Ningdong Hongshiwan coal[J]. CIESC Journal, 2018, 69(5): 2208-2216.
|
29 |
久利马里耶夫. 煤结构-化学指数分类与应用[M]. 聂书岭, 马凤云, 译. 北京: 化学工业出版社, 2013: 33.
|
|
Giulimareyev. Coal structure-chemical index classification and application[M]. NIE Shuling, MA Fengyun, trans. Beijing: Chemical Industry Press, 2013: 33.
|
30 |
FENG Li, ZHAO Guangyao, ZHAO Yingya, et al. Construction of the molecular structure model of the Shengli lignite using TG-GC/MS and FTIR spectrometry data[J]. Fuel, 2017, 203: 924-931.
|
31 |
LIU Xianfeng, SONG Dazhao, HE Xueqiu, et al. Insight into the macromolecular structural differences between hard coal and deformed soft coal[J]. Fuel, 2019, 245: 188-197.
|
32 |
HE Xueqiu, LIU Xianfeng, NIE Baisheng, et al. FTIR and Raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel, 2017, 206: 555-563.
|
33 |
段春婷, 刘均庆, 徐文强, 等. 三种不同原料中间相沥青的性质表征[J]. 化工进展, 2018, 37(1): 189-194.
|
|
DUAN Chunting, LIU Junqing, XU Wenqiang, et al. Characterization of mesophase pitches made from three different raw materials[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 189-194.
|
34 |
KELEMEN S R, AFEWORKI M, GORBATY M L,et al. Characterization of organically bound oxygen forms in lignites, peats, and pyrolyzed peats by X-ray photoelectron spectroscopy (XPS) and solid-state 13C NMR methods[J]. Energy & Fuels, 2002, 16(6): 1450-1462.
|
35 |
LI Zhanku, WEI Xianyong, YAN Honglei, et al. Insight into the structural features of Zhaotong lignite using multiple techniques[J]. Fuel, 2015, 153: 176-182.
|
36 |
WANG Yugao, WEI Xianyong, WANG Shengkang, et al. Structural evaluation of Xiaolongtan lignite by direct characterization and pyrolytic analysis[J]. Fuel Processing Technology, 2016, 144: 248-254.
|
37 |
杜鸿飞, 段钰锋, 佘敏. 高硫石油焦热解过程及硫形态的变化特性[J]. 化工进展, 2016, 35(8): 2420-2425.
|
|
DU Hongfei, DUAN Yufeng, SHE Min. Research on pyrolysis process of high sulfur petroleum coke and the changes of sulfur species[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2420-2425.
|
38 |
SUPALUKNARI S, LARKINS F P, REDLICH P, et al. Determination of aromaticities and other structural features of Australian coals using solid state 13C NMR and FTIR spectroscopies[J]. Fuel Processing Technology, 1989, 23(1): 47-61.
|
39 |
王擎, 王智超, 贾春霞, 等. 基于固体 13C 核磁共振技术对油砂沥青质结构的研究[J]. 化工进展, 2014, 33(6): 1392-1396.
|
|
WANG Qiang, WANG Zhichao, JIA Chunxia, et al. Study on structural features of oil sands with solid state 13C NMR[J]. Chemical Industry and Engineering Progress, 2014, 33(6): 1392-1396.
|
40 |
CUI Xin, YAN Huang, ZHAO Peitao, et al. Modeling of molecular and properties of anthracite base on structural accuracy identification methods[J]. Journal of Molecular Structure, 2019, 1183: 313-323.
|
41 |
谢克昌. 煤的结构与反应[M]. 北京: 科学出版社, 2002: 88.
|
|
XIE Kechang. Coal structure and its reactivity[M]. Beijing: Science Press, 2002: 88.
|
42 |
冯炜, 高红凤, 王贵, 等. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531.
|
|
FENG Wei, GAO Hongfeng, WANG Gui, et al. Molecular model and pyrolysis simulation of Zaoquan coal[J]. CIESC Journal, 2019, 70(4): 1522-1531.
|
43 |
SHI Kaiyi, GUI Xiahui, TAO Xiuxiang, et al. Macromolecular structural unit construction of Fushun nitric-acid-oxidized coal[J]. Energy & Fuels, 2015, 29(6): 3566-3572.
|
44 |
XIANG Jianhua, ZENG Fangui, LI Bin, et al. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. Journal of Fuel Chemistry and Technology, 2013, 41(4): 391-400.
|
45 |
XIANG Jianhua, ZENG Fangui, LIANG Huzhen, et al. Model construction of the macromolecular structure of Yanzhou coal and its molecular simulation[J]. Journal of Fuel Chemistry and Technology, 2011, 39(7): 481-488.
|
46 |
MENG Junqing, ZHONG Ruquan, LI Shichao, et al. Molecular model construction and study of gas adsorption of Zhaozhuang coal[J]. Energy & Fuels, 2018, 32(9): 9727-9737.
|
47 |
WANG Jie, HE Yaqun, LI Hong, et al. The molecular structure of Inner Mongolia lignite utilizing XRD, solid state 13C NMR, HRTEM and XPS techniques[J]. Fuel, 2017, 203: 764-773.
|