Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (7): 3923-3931.DOI: 10.16085/j.issn.1000-6613.2020-1587
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
GAO Hao1(), LU Jiasheng1, ZHANG Wenming1,2, DONG Weiliang1,2, FANG Yan1,2, YU Ziyi3, XIN Fengxue1,2(), JIANG Min1,2()
Received:
2020-08-10
Revised:
2020-10-20
Online:
2021-07-19
Published:
2021-07-06
Contact:
XIN Fengxue,JIANG Min
高豪1(), 陆家声1, 章文明1,2, 董维亮1,2, 方艳1,2, 余子夷3, 信丰学1,2(), 姜岷1,2()
通讯作者:
信丰学,姜岷
作者简介:
高豪(1995—),男,博士研究生,研究方向为合成生物学、生物催化剂固定化技术。E-mail:基金资助:
CLC Number:
GAO Hao, LU Jiasheng, ZHANG Wenming, DONG Weiliang, FANG Yan, YU Ziyi, XIN Fengxue, JIANG Min. Application of material-mediated cell immobilization technology in biological fermentation[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3923-3931.
高豪, 陆家声, 章文明, 董维亮, 方艳, 余子夷, 信丰学, 姜岷. 材料介导细胞固定化技术在生物发酵中的应用[J]. 化工进展, 2021, 40(7): 3923-3931.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1587
材料 | 菌株 | 固定化方法 | 产物 | 结果 | 参考文献 |
---|---|---|---|---|---|
海藻酸钙凝胶 | C. thermocellum C. thermolacticum | 包埋 | 乙醇 | 乙醇的产率接近理论效率的85% | [ |
海藻酸钙凝胶 | Candida shehatae Saccharomyces cerevisiae | 包埋 | 乙醇 | 发酵时间缩短16.67%,乙醇产量提高了12.12% | [ |
果胶酸钙凝胶 | L. casei | 包埋 | 乳酸 | 乳酸的转化率为94.37%,乳酸的产量为32.95g·L-1 | [ |
壳聚糖凝胶 | Enterococcus faecalis | 包埋 | L-瓜氨酸 | 建立了L-瓜氨酸工业生产工艺 | [ |
海藻酸钠-壳聚糖凝胶 | S. cerevisiae P. tannophilus | 包埋 | 乙醇 | 凝胶稳定,乙醇浓度为20.04g·L-1 | [ |
海藻酸钙凝胶珠 | L. rhamnosus | 包埋 | 酸 | 优化了最佳的固定化条件 | [ |
材料 | 菌株 | 固定化方法 | 产物 | 结果 | 参考文献 |
---|---|---|---|---|---|
海藻酸钙凝胶 | C. thermocellum C. thermolacticum | 包埋 | 乙醇 | 乙醇的产率接近理论效率的85% | [ |
海藻酸钙凝胶 | Candida shehatae Saccharomyces cerevisiae | 包埋 | 乙醇 | 发酵时间缩短16.67%,乙醇产量提高了12.12% | [ |
果胶酸钙凝胶 | L. casei | 包埋 | 乳酸 | 乳酸的转化率为94.37%,乳酸的产量为32.95g·L-1 | [ |
壳聚糖凝胶 | Enterococcus faecalis | 包埋 | L-瓜氨酸 | 建立了L-瓜氨酸工业生产工艺 | [ |
海藻酸钠-壳聚糖凝胶 | S. cerevisiae P. tannophilus | 包埋 | 乙醇 | 凝胶稳定,乙醇浓度为20.04g·L-1 | [ |
海藻酸钙凝胶珠 | L. rhamnosus | 包埋 | 酸 | 优化了最佳的固定化条件 | [ |
材料 | 菌株 | 固定化方法 | 产物 | 结果 | 参考文献 |
---|---|---|---|---|---|
聚酰胺(尼龙) | P. acidipropionici | 吸附 | 丙酸 | 丙酸生产强度和产量分别为0.46g·L-1·h-1和25.8g·L-1 | [ |
聚乙烯醇凝胶 | C. acetobutylicum | 包埋 | 丁醇 | 丁醇生产强度达0.57g·L-1·h-1 | [ |
聚丙烯酰胺凝胶 | L. rhamnosus | 包埋 | 乳酸 | 凝胶具有良好的渗透特性,细胞完全保留在聚合物凝胶中 | [ |
聚乳酸微管阵列膜 | Lb. acidophilus | 包埋 | 乳酸 | 包埋效率高、稳定性好 | [ |
聚乙烯醇水凝胶 | C. butyricum | 包埋 | 1,3-丙二醇 | 稳定性好,生产强度提高 | [ |
聚乙烯醇水凝胶 | Zymomonas mobilis | 包埋 | 乙醇 | 乙醇产量提高100%(31.09g·L-1·h-1) | [ |
聚丙烯酰胺凝胶 | L. rhamnosus | 包埋 | 乳酸 | 产物转化率为85%~90% | [ |
材料 | 菌株 | 固定化方法 | 产物 | 结果 | 参考文献 |
---|---|---|---|---|---|
聚酰胺(尼龙) | P. acidipropionici | 吸附 | 丙酸 | 丙酸生产强度和产量分别为0.46g·L-1·h-1和25.8g·L-1 | [ |
聚乙烯醇凝胶 | C. acetobutylicum | 包埋 | 丁醇 | 丁醇生产强度达0.57g·L-1·h-1 | [ |
聚丙烯酰胺凝胶 | L. rhamnosus | 包埋 | 乳酸 | 凝胶具有良好的渗透特性,细胞完全保留在聚合物凝胶中 | [ |
聚乳酸微管阵列膜 | Lb. acidophilus | 包埋 | 乳酸 | 包埋效率高、稳定性好 | [ |
聚乙烯醇水凝胶 | C. butyricum | 包埋 | 1,3-丙二醇 | 稳定性好,生产强度提高 | [ |
聚乙烯醇水凝胶 | Zymomonas mobilis | 包埋 | 乙醇 | 乙醇产量提高100%(31.09g·L-1·h-1) | [ |
聚丙烯酰胺凝胶 | L. rhamnosus | 包埋 | 乳酸 | 产物转化率为85%~90% | [ |
材料 | 菌株 | 固定化方法 | 产物 | 结果 | 参考文献 |
---|---|---|---|---|---|
活性炭 | C. acetobutylicum | 吸附 | 氢和丁醇 | 生物膜的形成强化了氢气和丁醇的发酵 | [ |
氧化铁纳米颗粒 | Bacillus subtilis natto | 吸附 | 甲萘醌-7 | 产率提高15%,颗粒的细菌捕获效率达到95% | [ |
陶瓷 | Klebsiella pneumoniae | 吸附 | 1,3-丙二醇 | 产率提高200%,细胞抗极端条件下有较高的耐受性 | [ |
介孔氧化硅 | L. rhamnosus | 吸附 | 乳酸 | 葡萄糖转化率达92.4% | [ |
材料 | 菌株 | 固定化方法 | 产物 | 结果 | 参考文献 |
---|---|---|---|---|---|
活性炭 | C. acetobutylicum | 吸附 | 氢和丁醇 | 生物膜的形成强化了氢气和丁醇的发酵 | [ |
氧化铁纳米颗粒 | Bacillus subtilis natto | 吸附 | 甲萘醌-7 | 产率提高15%,颗粒的细菌捕获效率达到95% | [ |
陶瓷 | Klebsiella pneumoniae | 吸附 | 1,3-丙二醇 | 产率提高200%,细胞抗极端条件下有较高的耐受性 | [ |
介孔氧化硅 | L. rhamnosus | 吸附 | 乳酸 | 葡萄糖转化率达92.4% | [ |
材料 | 菌株 | 固定化方法 | 产物 | 结果 | 参考文献 |
---|---|---|---|---|---|
聚乙烯醇/海藻酸钙珠 | L. rhamnosus | 包埋 | 乳酸 | 乳酸最高生产强度为0.8g·L-1·h-1 | [ |
纤维素/海藻酸钙/聚乳酸 | L. bulgaricus | 吸附/包埋 | 乳酸 | 在同一生物反应器发酵中避免抑制问题 | [ |
二氧化硅/海藻酸钙 | Oenococcus oeni | 包埋 | 苹果酸 | 有效地避免产物抑制 | [ |
聚乙烯醇/海藻酸钙 | L. pentosus | 包埋 | 乳酸 | 15次分批重复发酵中保持稳定高效的性能 | [ |
材料 | 菌株 | 固定化方法 | 产物 | 结果 | 参考文献 |
---|---|---|---|---|---|
聚乙烯醇/海藻酸钙珠 | L. rhamnosus | 包埋 | 乳酸 | 乳酸最高生产强度为0.8g·L-1·h-1 | [ |
纤维素/海藻酸钙/聚乳酸 | L. bulgaricus | 吸附/包埋 | 乳酸 | 在同一生物反应器发酵中避免抑制问题 | [ |
二氧化硅/海藻酸钙 | Oenococcus oeni | 包埋 | 苹果酸 | 有效地避免产物抑制 | [ |
聚乙烯醇/海藻酸钙 | L. pentosus | 包埋 | 乳酸 | 15次分批重复发酵中保持稳定高效的性能 | [ |
1 | 吴天飞, 潘建洪, 方从申, 等. 固定化细胞技术应用进展[J]. 浙江化工, 2020, 51(3): 10-13. |
WU Tianfei, PAN Jianhong, FANG Congshen, et al. Application progress of immobilized cells technology[J]. Zhejiang Chemical Industry, 2020, 51(3): 10-13. | |
2 | DÍEZ-ANTOLÍNEZ R, HIJOSA-VALSERO M, PANIAGUA-GARCÍA A I, et al. Yeast screening and cell immobilization on inert supports for ethanol production from cheese whey permeate with high lactose loads[J]. PLoS One, 2018, 13(12): e0210002. |
3 | 李俊, 宗红, 诸葛斌, 等. Acetobacter sp.驯化选育及固定化生产3-羟基丙酸[J]. 食品与发酵工业, 2016, 42(9): 40-44. |
LI Jun, ZONG Hong, ZHUGE Bin, et al. Domestication and immobilization of Acetobacter sp. for 3-hydroxypropionic acid bioproduction[J]. Food and Fermentation Industries, 2016, 42(9): 40-44. | |
4 | 杨涛, 李恒, 龚劲松, 等. 固定化Gibberella intermedia转化3-氰基吡啶制备烟酸[J]. 化工进展, 2014, 33(9): 2432-2437. |
YANG Tao, LI Heng, GONG Jinsong, et al. Biotransformation of 3-cyanopyridine for producing nicotinic acid by immobilized Gibberella intermedia[J]. Chemical Industry and Engineering Progress, 2014, 33(9): 2432-2437. | |
5 | 汪茂, 王雪, 刘峰, 等. 径迹纳米孔高分子膜的制备和表征[J]. 原子能科学技术, 2019, 53(10): 2120-2128. |
WANG Mao, WANG Xue, LIU Feng, et al. Fabrication and characterization of nanoporous polymer track membrane[J]. Atomic Energy Science and Technology, 2019, 53(10): 2120-2128. | |
6 | XU L, TSCHIRNER U. Immobilized anaerobic fermentation for bio-fuel production by Clostridiumco-culture[J]. Bioprocess and Biosystems Engineering, 2014, 37(8): 1551-1559. |
7 | PANESAR P S, KENNEDY J F, KNILL C J, et al. Applicability of pectate-entrapped Lactobacillus casei cells for L(+) lactic acid production from whey[J]. Applied Microbiology and Biotechnology, 2007, 74(1): 35-42. |
8 | YANG Z Y. Immobilization of Enterococcus faecalis cells with chitosan: a new process for the industrial production of l-citrulline[J]. Process Biochemistry, 2015, 50(7): 1056-1060. |
9 | YANG J M, YANG J H, TSOU S C, et al. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber[J]. Materials Science and Engineering C, 2016, 66: 170-177. |
10 | ZHANG W, BAI A, CHEN X, et al. Ethanol production from lignocelluloses hydrolyzates with immobilized multi-microorganisms[J]. Energy Sources A: Recovery, Utilization, and Environmental Effects, 2012, 34(13): 1206-1212. |
11 | 吴亚杰, 李辉军, 戴昕, 等. 无机材料对固定化微生物凝胶球性能的影响[J]. 环境工程学报, 2014, 8(8): 3289-3293. |
WU Yajie, LI Huijun, DAI Xin, et al. Effect of inorganic materials on properties of immobilized microorganism gel beads[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3289-3293. | |
12 | 江枫, 房伶晏, 王浩, 等. 固定化混合菌利用戊糖和己糖共发酵制备乙醇[J]. 林业工程学报, 2017, 2(4): 90-95. |
JIANG Feng, FANG Lingyan, WANG Hao, et al. Co-fermentation of pentose and hexose to ethanol by immobilized mixed yeasts method[J]. Journal of Forestry Engineering, 2017, 2(4): 90-95. | |
13 | 徐阳, 陈中, 刘秉杰. 海藻酸钙固定化鼠李糖乳杆菌LR-D的条件优化[J]. 食品科技, 2019, 44(11): 1-8. |
XU Yang, CHEN Zhong, LIU Bingjie. Optimization of conditions for immobilization of Lactobacillus rhamnosus LR-D with calcium alginate[J]. Food Science and Technology, 2019, 44(11): 1-8. | |
14 | BELGRANO F D S, DIEGEL O, PEREIRA N, et al. Cell immobilization on 3D-printed matrices: a model study on propionic acid fermentation[J]. Bioresource Technology, 2018, 249: 777-782. |
15 | JOHNSTON T G, YUAN S F, WAGNER J M, et al. Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation[J]. Nature Communications, 2020, 11: 563. |
16 | SAHA A, JOHNSTON T G, SHAFRANEK R T, et al. Additive manufacturing of catalytically active living materials[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 13373-13380. |
17 | DOLEJŠ I, KRASŇAN V, STLOUKAL R, et al. Butanol production by immobilised Clostridium acetobutylicum in repeated batch, fed-batch, and continuous modes of fermentation[J]. Bioresource Technology, 2014, 169: 723-730. |
18 | PETROV K K, PETROVA P M, BESCHKOV V N. Improved immobilization of Lactobacillus rhamnosus ATCC 7469 in polyacrylamide gel, preventing cell leakage during lactic acid fermentation[J]. World Journal of Microbiology and Biotechnology, 2007, 23(3): 423-428. |
19 | CHEN C C, LAN C C, PAN C L, et al. Repeated-batch lactic acid fermentation using a novel bacterial immobilization technique based on a microtube array membrane[J]. Process Biochemistry, 2019, 87: 25-32. |
20 | DOLEJŠ I, LÍŠKOVÁ M, KRASŇAN V, et al. Production of 1,3-propanediol from pure and crude glycerol using immobilized clostridium butyricum[J]. Catalysts, 2019, 9(4): 317. |
21 | NURHAYATI, CHENG C L, NAGARAJAN D, et al. Immobilization of Zymomonas mobilis with Fe2O3-modified polyvinyl alcohol for continuous ethanol fermentation[J]. Biochemical Engineering Journal, 2016, 114: 298-306. |
22 | PETROV K K, YANKOV D S, BESCHKOV V N. Lactic acid fermentation by cells of Lactobacillus rhamnosus immobilizedin polyacrylamide gel[J]. World Journal of Microbiology and Biotechnology, 2006, 22(4): 337-345. |
23 | GOKFILIZ P, KARAPINAR I. The effect of support particle type on thermophilic hydrogen production by immobilized batch dark fermentation[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2553-2561. |
24 | XIAO H, GU Y, NING Y, et al. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose[J]. Applied and Environmental Microbiology, 2011, 77(22): 7886-7895. |
25 | KIM K H, KIM J Y, CHO T S, et al. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida)[J]. Bioresource Technology, 2012, 118: 158-162. |
26 | LU J H, CHEN C, HUANG C, et al. Dark fermentation production of volatile fatty acids from glucose with biochar amended biological consortium[J]. Bioresource Technology, 2020, 303: 122921. |
27 | WU J W, DONG L L, ZHOU C S, et al. Enhanced butanol-hydrogen coproduction by Clostridium beijerinckii with biochar as cell’s carrier[J]. Bioresource Technology, 2019, 294: 122141. |
28 | LU J H, CHEN C, HUANG C, et al. Glucose fermentation with biochar amended consortium: sequential fermentations[J]. Bioresource Technology, 2020, 303: 122933. |
29 | LIU J Y, ZHOU W C, FAN S Q, et al. Coproduction of hydrogen and butanol by Clostridium acetobutylicum with the biofilm immobilized on porous particulate carriers[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11617-11624. |
30 | EBRAHIMINEZHAD A, VARMA V, YANG S Y, et al. Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation[J]. Applied Microbiology and Biotechnology, 2016, 100(1): 173-180. |
31 | GUNGORMUSLER M, GONEN C, AZBAR N. Use of ceramic-based cell immobilization to produce 1,3-propanediol from biodiesel-derived waste glycerol with Klebsiella pneumoniae[J]. Journal of Applied Microbiology, 2011, 111(5): 1138-1147. |
32 | ZHAO Z J, XIE X N, WANG Z, et al. Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: an efficiency continuous cell-recycle fermentation system for lactic acid production[J]. Journal of Bioscience and Bioengineering, 2016, 121(6): 645-651. |
33 | DING S L, FANG D X, PANG Z S, et al. Immobilization of powdery calcium silicate hydrate via PVA covalent cross-linking process for phosphorus removal[J]. Science of the Total Environment, 2018, 645: 937-945. |
34 | RADOSAVLJEVIĆ M, LEVIĆ S, BELOVIĆ M, et al. Immobilization of Lactobacillus rhamnosus in polyvinyl alcohol/calcium alginate matrix for production of lactic acid[J]. Bioprocess and Biosystems Engineering, 2020, 43(2): 315-322. |
35 | KUMAR M N, GIALLELI A I, MASSON J B, et al. Lactic acid fermentation by cells immobilised on various porous cellulosic materials and their alginate/poly-lactic acid composites[J]. Bioresource Technology, 2014, 165: 332-335. |
36 | SIMÓ G, FERNÁNDEZ-FERNÁNDEZ E, VILA-CRESPO J, et al. Malolactic fermentation induced by silica-alginate encapsulated Oenococcus oeni with different inoculation regimes[J]. Australian Journal of Grape and Wine Research, 2019, 25(2): 165-172. |
37 | WANG J F, HUANG J Q, GUO H Y, et al. Optimization of immobilization conditions for Lactobacillus pentosus cells[J]. Bioprocess and Biosystems Engineering, 2020, 43(6): 1071-1079. |
38 | PRAVEEN P, LOH K C. Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis[J]. Applied Microbiology and Biotechnology, 2015, 99(23): 10345-10354. |
39 | NGUYEN D T T, PRAVEEN P, LOH K C. Zymomonas mobilis immobilization in polymeric membranes for improved resistance to lignocellulose-derived inhibitors in bioethanol fermentation[J]. Biochemical Engineering Journal, 2018, 140: 29-37. |
40 | NGUYEN D T T, PRAVEEN P, LOH K C. Co-culture of Zymomonas mobilis and Scheffersomyces stipitis immobilized in polymeric membranes for fermentation of glucose and xylose to ethanol[J]. Biochemical Engineering Journal, 2019, 145: 145-152. |
41 | KIM H, JEON B S, PANDEY A, et al. New coculture system of Clostridium spp. and Megasphaera hexanoica using submerged hollow-fiber membrane bioreactors for caproic acid production[J]. Bioresource Technology, 2018, 270: 498-503. |
42 | CHEN P C, ZHENG P, YE X Y, et al. Preparation of A. succinogenes immobilized microfiber membrane for repeated production of succinic acid[J]. Enzyme and Microbial Technology, 2017, 98: 34-42. |
43 | ROMO-URIBE A, MENESES-ACOSTA A, DOMÍNGUEZ-DÍAZ M. Viability of HEK 293 cells on poly-β-hydroxybutyrate (PHB) biosynthesized from a mutant Azotobacter vinelandii strain. Cast film and electrospun scaffolds[J]. Materials Science & Engineering C: Materials for Biological Applications, 2017, 81: 236-246. |
44 | STEVENS M M, GEORGE J H. Exploring and engineering the cell surface interface[J]. Science, 2005, 310(5751): 1135-1138. |
45 | HU M X, LI J N, GUO Q, et al. Probiotics biofilm-integrated electrospun nanofiber membranes: a new starter culture for fermented milk production[J]. Journal of Agricultural and Food Chemistry, 2019, 67(11): 3198-3208. |
46 | SHAHAB R L, LUTERBACHER J S, BRETHAUER S, et al. Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium[J]. Biotechnology and Bioengineering, 2018, 115(5): 1207-1215. |
[1] | WANG Xueting, GU Xia, XU Xianbao, ZHAO Lei, XUE Gang, LI Xiang. Effectiveness of hydrothermal pretreatment on valeric acid production during food waste fermentation [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4994-5002. |
[2] | LU Shaojie, LIU Jia, JI Qianzhu, LI Ping, HAN Yueyang, TAO Min, LIANG Wenjun. Preparation of diatomaceous earth-based composite filler and its xylene removal performance by a biotrickling filter [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3884-3892. |
[3] | ZHANG Yaodan, SUN Ruoxi, CHEN Pengcheng. Advances of multi-enzyme co-immobilization carrier based on cascade reactions [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3167-3176. |
[4] | QIN Kai, YANG Shilin, LI Jun, CHU Zhenyu, BO Cuimei. A Kalman filter algorithm-based high precision detection method for glucoamylase biosensors [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3177-3186. |
[5] | YUE Xin, LI Chunying, SUN Dao’an, LI Jiangwei, DU Yongmei, MA Hui, LYU Jian. Progress on heterogeneous catalysts for cyclopropanation of diazo compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2390-2401. |
[6] | MAO Menglei, MENG Lingding, GAO Rui, MENG Zihui, LIU Wenfang. Research progress on enzyme immobilization on porous framework materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2516-2535. |
[7] | HUANG Yue, ZHAO Lixin, YAO Zonglu, YU Jiadong, LI Zaixing, SHEN Ruixia, AN Kemeng, HUANG Yali. Research progress in directed bioconversion of lactic acid and acetic acid from wood lignocellulosic wastes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2691-2701. |
[8] | ZHANG Han, ZHANG Xiaojing, MA Bingbing, NAI Can, LIU Shuoshuo, MA Yongpeng, SONG Yali. Feasibility of starting anammox process with municipal waste sludge as seed sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1080-1088. |
[9] | WANG Chuandong, ZHANG Junqi, LIU Dingyuan, MA Yuanyuan, LI Feng, SONG Hao. Co-utilization of xylose and glucose to produce chemicals by microorganisms [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 354-372. |
[10] | LIU Yajuan. Research status of membrane fouling mitigation by PAC in submerged PAC-AMBRs [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 457-468. |
[11] | LI Wanqi, YANG Fengjuan, JIA Dechen, JIANG Weihong, GU Yang. Biological utilization and conversion of syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 73-85. |
[12] | MENG Lingding, MAO Menglei, LIAO Qiyong, MENG Zihui, LIU Wenfang. Recent advance in stability of carbonic anhydrase and formate dehydrogenase [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 436-447. |
[13] | XU Yabing, WANG Baoshan, WANG Guangzong, ZHANG Yang. Degradation of refractory organics in the pharmaceutical wastewater by bioelectrochemical system [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5055-5064. |
[14] | TANG Ting, ZHOU Wenfeng, WANG Zhi, ZHU Chenjie, XU Jingliang, ZHUANG Wei, YING Hanjie, OUYANG Pingkai. Advances of multienzymes co-immobilization technology for sugar catalysis [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2636-2648. |
[15] | ZHANG Yan, WANG Wei, XIE Rui, JU Xiaojie, LIU Zhuang, CHU Liangyin. Controllable fabrication of polymeric microparticles loaded with enzyme@ZIF-8 [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2022-2028. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |