Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 3346-3362.DOI: 10.16085/j.issn.1000-6613.2020-1297
• Materials science and technology • Previous Articles Next Articles
Received:
2020-07-09
Revised:
2020-08-27
Online:
2021-06-22
Published:
2021-06-06
Contact:
GAO Yunling
通讯作者:
高云玲
作者简介:
安宁(1995—),男,硕士研究生,研究方向为分子探针。E-mail:基金资助:
CLC Number:
AN Ning, GAO Yunling. Reaction-based fluorescent probes for detection of HClO/ClO-[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3346-3362.
安宁, 高云玲. 反应型HClO/ClO-荧光探针的研究进展[J]. 化工进展, 2021, 40(6): 3346-3362.
荧光探针编号 | 量子产率 | 响应速度/s | 检测限/nmol·L-1 | 应用 | 颜色的变化 | 参考文献 |
---|---|---|---|---|---|---|
1 | — | 215 | 31.6 | L929细胞 | 无 | [ |
2 | 0.85→0.014 | 30 | 41.8 | RAW264.7细胞 | 无 | [ |
3 | 0.233→0.392 | 40 | 321 | RAW264.7细胞 | 无 | [ |
4 | — | 120 | 182 | HeLa细胞 | 红色变无色 | [ |
5 | — | 210 | 13.2 | HeLa细胞 | 红色变无色 | [ |
6 | — | 13 | 25 | RAW264.7细胞 | 无 | [ |
7 | — | — | 80 | 水体样本 | 蓝色变粉红色 | [ |
8 | — | — | — | HepG2细胞 | 无 | [ |
9 | 0.28→0.05 | 30 | 165 | HeLa细胞 | 黄色变无色 | [ |
10 | 0.003→0.216 | 120 | 4.1 | RAW264.7细胞 | 蓝色变紫色 | [ |
11 | 0.01→0.28 | 10 | 22.6 | HepG2细胞 | 蓝色变紫色 | [ |
12 | 0.051→0.074 | 10 | 449.76 | PC12细胞 | 淡黄色变无色 | [ |
13 | 0.0013→0.22 | 60 | 53 | HeLa细胞 | 无 | [ |
14 | — | — | 39 | 水体样本 | 粉红变浅黄色 | [ |
15 | 0.02→0.32 | 60 | 120 | RAW264.7细胞 | 无 | [ |
16 | 0.0012→0.0094 | — | 2330 | RAW264.7细胞 | 无 | [ |
17 | 0.02→0.43 | 300 | 737 | 水体样本 | 紫色变绿色 | [ |
18 | — | 120 | 210 | A549细胞 | 黄色变无色 | [ |
19 | 0.07→0.55 | 20 | 8.3 | RAW264.7细胞 | 无 | [ |
20 | — | 60 | 580 | CHO细胞 | 无 | [ |
21 | — | 60 | 790 | CHO细胞 | 无 | [ |
22 | 0.006→0.389 | 3s | 2.88 | RAW264.7细胞 | 无 | [ |
23 | 0.059→0.56 | 210 | 228 | HepG2细胞 | 粉红色变橙色 | [ |
24 | 0.0094→0.1647 | 30 | 49 | RAMOS细胞 | 无 | [ |
25 | — | 210 | 14 | HeLa细胞 | 无 | [ |
26 | 0.166→0.186 | 30 | 334 | RAMOS细胞 | 无 | [ |
27 | — | 90 | 32 | HeLa细胞 | 无 | [ |
28 | 0.0045→0.073 | 3 | 270 | RAW264.7细胞 | 无 | [ |
29 | — | 40 | 128 | MRC-5细胞和斑马鱼细胞 | 黄色变无色 | [ |
30 | — | 20 | 11.4 | RAMOS细胞 | 无色变黄色 | [ |
31 | — | 300 | 20 | 水体样本 | 无 | [ |
32 | 0.05→0.19 | 15 | 86 | HeLa细胞 | 无 | [ |
33 | — | 20 | 20.5 | 4T1细胞 | 无 | [ |
34 | — | 300 | 164 | RAW264.7细胞 | 无 | [ |
35 | 0.001→0.22 | 5 | 24.3 | HeLa细胞 | 无 | [ |
36 | 0.028→0.371 | 5 | 3.30 | RAW264.7细胞 | 无 | [ |
37 | — | 60 | 0.9 | RAW264.7细胞 | 无 | [ |
38 | — | 180 | 28.2 | HeLa细胞 | 无 | [ |
39 | — | 120 | 63 | 试纸条应用 | 浅绿色变橙色 | [ |
40 | 0.019→0.066 | 30 | 15.7 | HepG2细胞 | 黄色变红色 | [ |
41 | — | 60 | 400 | RAW264.7细胞 | 浅黄色变红色 | [ |
荧光探针编号 | 量子产率 | 响应速度/s | 检测限/nmol·L-1 | 应用 | 颜色的变化 | 参考文献 |
---|---|---|---|---|---|---|
1 | — | 215 | 31.6 | L929细胞 | 无 | [ |
2 | 0.85→0.014 | 30 | 41.8 | RAW264.7细胞 | 无 | [ |
3 | 0.233→0.392 | 40 | 321 | RAW264.7细胞 | 无 | [ |
4 | — | 120 | 182 | HeLa细胞 | 红色变无色 | [ |
5 | — | 210 | 13.2 | HeLa细胞 | 红色变无色 | [ |
6 | — | 13 | 25 | RAW264.7细胞 | 无 | [ |
7 | — | — | 80 | 水体样本 | 蓝色变粉红色 | [ |
8 | — | — | — | HepG2细胞 | 无 | [ |
9 | 0.28→0.05 | 30 | 165 | HeLa细胞 | 黄色变无色 | [ |
10 | 0.003→0.216 | 120 | 4.1 | RAW264.7细胞 | 蓝色变紫色 | [ |
11 | 0.01→0.28 | 10 | 22.6 | HepG2细胞 | 蓝色变紫色 | [ |
12 | 0.051→0.074 | 10 | 449.76 | PC12细胞 | 淡黄色变无色 | [ |
13 | 0.0013→0.22 | 60 | 53 | HeLa细胞 | 无 | [ |
14 | — | — | 39 | 水体样本 | 粉红变浅黄色 | [ |
15 | 0.02→0.32 | 60 | 120 | RAW264.7细胞 | 无 | [ |
16 | 0.0012→0.0094 | — | 2330 | RAW264.7细胞 | 无 | [ |
17 | 0.02→0.43 | 300 | 737 | 水体样本 | 紫色变绿色 | [ |
18 | — | 120 | 210 | A549细胞 | 黄色变无色 | [ |
19 | 0.07→0.55 | 20 | 8.3 | RAW264.7细胞 | 无 | [ |
20 | — | 60 | 580 | CHO细胞 | 无 | [ |
21 | — | 60 | 790 | CHO细胞 | 无 | [ |
22 | 0.006→0.389 | 3s | 2.88 | RAW264.7细胞 | 无 | [ |
23 | 0.059→0.56 | 210 | 228 | HepG2细胞 | 粉红色变橙色 | [ |
24 | 0.0094→0.1647 | 30 | 49 | RAMOS细胞 | 无 | [ |
25 | — | 210 | 14 | HeLa细胞 | 无 | [ |
26 | 0.166→0.186 | 30 | 334 | RAMOS细胞 | 无 | [ |
27 | — | 90 | 32 | HeLa细胞 | 无 | [ |
28 | 0.0045→0.073 | 3 | 270 | RAW264.7细胞 | 无 | [ |
29 | — | 40 | 128 | MRC-5细胞和斑马鱼细胞 | 黄色变无色 | [ |
30 | — | 20 | 11.4 | RAMOS细胞 | 无色变黄色 | [ |
31 | — | 300 | 20 | 水体样本 | 无 | [ |
32 | 0.05→0.19 | 15 | 86 | HeLa细胞 | 无 | [ |
33 | — | 20 | 20.5 | 4T1细胞 | 无 | [ |
34 | — | 300 | 164 | RAW264.7细胞 | 无 | [ |
35 | 0.001→0.22 | 5 | 24.3 | HeLa细胞 | 无 | [ |
36 | 0.028→0.371 | 5 | 3.30 | RAW264.7细胞 | 无 | [ |
37 | — | 60 | 0.9 | RAW264.7细胞 | 无 | [ |
38 | — | 180 | 28.2 | HeLa细胞 | 无 | [ |
39 | — | 120 | 63 | 试纸条应用 | 浅绿色变橙色 | [ |
40 | 0.019→0.066 | 30 | 15.7 | HepG2细胞 | 黄色变红色 | [ |
41 | — | 60 | 400 | RAW264.7细胞 | 浅黄色变红色 | [ |
1 | HUO Fangjun, ZHANG Jingjing, YANG Yutao, et al. A fluorescein-based highly specific colorimetric and fluorescent probe for hypochlorites in aqueous solution and its application in tap water[J]. Sensors and Actuators B: Chemical, 2012, 166-167: 44-49. |
2 | ZHANG Dengqing. Highly selective and sensitive colorimetric probes for hypochlorite anion based on azo derivatives[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010, 77(2): 397-401. |
3 | CHEN Hong, SUN Tao, QIAO Xiaoguang, et al. Red-emitting fluorescent probe for detecting hypochlorite acid in vitro and in vivo[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 204: 196-202. |
4 | LI Gang, JI Dandan, ZHANG Shuman, et al. A mitochondria-targeting fluorescence turn-on probe for hypochlorite and its applications for in vivo imaging[J]. Sensors and Actuators B: Chemical, 2017, 252: 127-133. |
5 | HAN Danjuan, QIAN Manping, GAO Hongfang, et al. A "switch-on" photoluminescent and electrochemiluminescent multisignal probe for hypochlorite via a cyclometalated iridium complex[J]. Analytica Chimica Acta, 2019, 1074: 98-107. |
6 | WU S M, PIZZO S V. α2-Macroglobulin from rheumatoid arthritis synovial fluid: functional analysis defines a role for oxidation in inflammation[J]. Archives Biochemistry and Biophysics, 2001, 391(1): 119-126. |
7 | STEINBECK M J, NESTI L J, SHARKEY P F, et al. Myeloperoxidase and chlorinated peptides in osteoarthritis: potential biomarkers of the disease[J]. Journal of Orthopaedic Research, 2007, 25(9): 1128-1135. |
8 | Yannwan YAP, WHITEMAN M, CHEUNG Namsang. Chlorinative stress: an under appreciated mediator of neurodegeneration?[J]. Cellular Signalling, 2007,19(2): 219-228. |
9 | SUGIYAMA S, KUGIYAMA K, AIKAWA M, et al. Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24(7): 1309-1314. |
10 | CHEN Weichieh, VENKATESAN P, WU Shupao. A highly selective turn-on fluorescent probe for hypochlorous acid based on hypochlorous acid-induced oxidative intramolecular cyclization of boron dipyrromethene-hydrazone[J]. Analytica Chimica Acta, 2015, 882: 68-75. |
11 | JACKSON D S, CROCKETT D F, WOLNIK K A. The indirect detection of bleach (sodium hypochlorite) in beverages as evidence of product tampering[J]. Journal of Forensic Sciences, 2006, 51(4): 827-831. |
12 | MA Zhiwei, WANG Xiao, WANG Chuanchuan, et al. A sensitive and selective fluorescence probe for detection of hypochlorite (OCl-) and its bioimaging in live cells[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 213: 370-374. |
13 | ORDEIG O, MAS R, GONZALO J, et al. Continuous detection of hypochlorous acid/hypochlorite for water quality monitoring and control[J]. Electroanalysis, 2005, 17(18): 1641-1648. |
14 | SOLDATKIN A P, GORCHKOV D V, MARTELET C, et al. New enzyme potentiometric sensor for hypochlorite species detection[J]. Sensors and Actuators B: Chemical, 1997, 43(1/2/3): 99-104. |
15 | ZHANG Jia, WANG Xiaolei, YANG Xiurong. Colorimetric determination of hypochlorite with unmodified gold nanoparticles through the oxidation of a stabilizer thiol compound[J]. The Analyst, 2012, 137(12): 2806-2812. |
16 | LI Wei, JIANG Chao, LU Sheng, et al. A hydrogel microsphere-based sensor for dual and highly selective detection of Al3+ and Hg2+[J]. Sensors and Actuators B: Chemical, 2020, 321: 128490. |
17 | WANG Kaijie, KONG Qing, CHEN Xiaoqiang, et al. A bifunctional rhodamine derivative as chemosensor for recognizing Cu2+ and Hg2+ ions via different spectra[J]. Chinese Chemical Letters, 2020, 31(5): 1087-1090. |
18 | LI Hao, YANG Youzhe, QI Xiaoyi, et al. Design and applications of a novel fluorescent probe for detecting glutathione in biological samples[J]. Analytica Chimica Acta, 2020, 1117: 18-24. |
19 | MA Qiujuan, WANG Chunyan, BAI Yu, et al. A lysosome-targetable and ratiometric fluorescent probe for hypochlorous acid in living cells based on a 1,8-naphthalimide derivative[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 223: 117334. |
20 | NGUYEN Vannghia, Seonye HEO, KIM Sangin, et al. A thiocoumarin-based turn-on fluorescent probe for hypochlorite detection and its application to live-cell imaging[J]. Sensors and Actuators B: Chemical, 2020, 317: 128213. |
21 | GU Bowen, DONG Chao, SHEN Ruwei, et al. Dioxetane-based chemiluminescent probe for fluoride ion-sensing in aqueous solution and living imaging[J]. Sensors and Actuators B: Chemical, 2019, 301: 127111. |
22 | ZHANG Zijian, Ting LYU, TAO Binbin, et al. A novel fluorescent probe based on naphthalimide for imaging nitroreductase (NTR) in bacteria and cells[J]. Bioorganic & Medicinal Chemistry, 2020, 28(3): 115280. |
23 | WU Ying, ZHANG Yuhuan, WANG Lan, et al. A simple ratiometric fluorescent sensor selectively compatible of different combinations of characteristic groups for identification of glutathione, cysteine and homocysteine[J]. Sensors and Actuators B: Chemical, 2020, 302: 127181. |
24 | WANG Dejia, FAN Xiaopeng, SUN Shiguo, et al. Substituent effect: a new strategy to construct a ratiometric fluorescent probe for detection of Al3+ and imaging in vivo[J]. Sensors and Actuators B: Chemical, 2018, 264: 304-311. |
25 | WEN Jia, LI Weisi, LI Jiaqi, et al. Study on rolling circle amplification of Ebola virus and fluorescence detection based on graphene oxide[J]. Sensors and Actuators B: Chemical, 2016, 227: 655-659. |
26 | 王少静, 李长伟, 李锦, 等. 新型香豆素类氟离子荧光探针的合成及细胞成像研究[J]. 化学学报, 2017, 75(4): 383-390. |
WANG Shaojing, LI Changwei, LI Jin, et al. Novel coumarin-based fluorescent probes for detecting fluoride ions in living cells[J]. Acta Chimica Sinica, 2017, 75(4): 383-390. | |
27 | 熊麟, 凡勇, 张凡. 稀土纳米晶用于近红外区活体成像和传感研究进展[J]. 化学学报, 2019, 77(12): 1239-1249. |
XIONG Lin, FAN Yong, ZHANG Fan. Research progress on rare earth nanocrystals for in vivo imaging and sensing in near infrared region[J]. Acta Chimica Sinica, 2019, 77(12): 1239-1249. | |
28 | 孙世国, 彭孝军, 凡明文, 等. 铼联吡啶系列光敏染料的研究[J]. 有机化学, 2004, 24(8): 953-956. |
SUN Shiguo, PENG Xiaojun, FAN Mingwen, et al. Studies on a series of rhenium(I) bipyridyl photosensitive dyes[J]. Chinese Journal of Organic Chemistry, 2004, 24(8): 953-956. | |
29 | 施锋, 李宏洋, 彭孝军, 等. 一种带有酯基并键合电子给体的新型Ru(bpy)3的设计、合成及光谱和电化学性能[J]. 化学学报, 2004, 62(7): 713-719. |
SHI Feng, LI Hongyang, PENG Xiaojun, et al. Synthesis and spectral properties of a new ruthenium(II) tris-bipyridine with four ester groups and substituted phenol[J]. Acta Chimica Sinica, 2004, 62(7): 713-719. | |
30 | SHEPHERD J, HILDERBRAND S A, WATERMAN P, et al. A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages[J]. Chemistry & Biology, 2007, 14(11): 1221-1231. |
31 | LIU Ying, ZHAO Zhimin, MIAO Junying, et al. A ratiometric fluorescent probe based on boron dipyrromethene and rhodamine Förster resonance energy transfer platform for hypochlorous acid and its application in living cells[J]. Analytica Chimica Acta, 2016, 921: 77-83. |
32 | NIE Kaixuan, DONG Bo, SHI Huanhuan, et al. Facile construction of AIE-based FRET nanoprobe for ratiometric imaging of hypochlorite in live cells[J]. Journal of Luminescence, 2020, 220: 117018. |
33 | TONG Lulu, QIAN Ying. A naphthalimide-rhodamine chemodosimeter for hypochlorite based on TBET: high quantum yield and endogeous imaging in living cells[J]. Journal of Photochemistry & Photobiology A: Chemistry, 2019, 368: 62-69. |
34 | CHEN Liyan, PARK Sangjun, WU Di, et al. A two-photon ESIPT based fluorescence probe for specific detection of hypochlorite[J]. Dyes and Pigments, 2018, 158: 526-532. |
35 | LIU Shuzhi, YANG Di, LIU Yijiang, et al. A dual-channel and fast-response fluorescent probe for selective detection of HClO and its applications in live cells[J]. Sensors and Actuators B: Chemical, 2019, 299: 126937. |
36 | WU Wenli, ZHAO Xuan, XI Longlong, et al. A mitochondria-targeted fluorescence probe for ratiometric detection of endogenous hypochlorite in the living cells[J]. Analytica Chimica Acta, 2017, 950: 178-183. |
37 | WANG Wei, NING Junya, LIU Jinting, et al. A mitochondria-targeted ratiometric fluorescence sensor for the detection of hypochlorite in living cells[J]. Dyes and Pigments, 2019, 171: 107708. |
38 | HU Qiao, QIN Caiqin, HUANG Lei, et al. Selective visualization of hypochlorite and its fluctuation in cancer cells by a mitochondria-targeting ratiometric fluorescent probe[J]. Dyes and Pigments, 2018, 149: 253-260. |
39 | ZHANG Qian, ZHANG Peng, GONG Yan, et al. Two-photon AIE based fluorescent probe with large stokes shift for selective and sensitive detection and visualization of hypochlorite[J]. Sensors and Actuators B: Chemical, 2019, 278: 73-81. |
40 | YAN Yehao, MA Hanlin, MIAO Junying, et al. A ratiometric fluorescence probe based on a novel recognition mechanism for monitoring endogenous hypochlorite in living cells[J]. Analytica Chimica Acta, 2019, 1064: 87-93. |
41 | YANG Xin, SUN Mingtai, WANG Tian, et al. A smartphone-based portable analytical system for on-site quantification of hypochlorite and its scavenging capacity of antioxidants[J]. Sensors and Actuators B: Chemical, 2019, 283: 524-531. |
42 | LI Jianping, XIA Shuang, ZHANG Hua, et al. Three-input “and-type” fluorescent logic gate as ratio probe for specific imaging of hypochlorite in rough endoplasmic reticulum[J]. Sensors and Actuators B: Chemical, 2018, 255: 622-629. |
43 | GAO Liangliang, WANG Wanwan, WU Weina, et al. Sensitive and selective fluorescent probe for hypochlorite in 100% aqueous solution and its application for lysosome-targetable cell imaging[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 231: 118110. |
44 | VEDAMALAI M, KEDARIA D, VASITA R, et al. Oxidation of phenothiazine based fluorescent probe for hypochlorite and its application to live cell imaging[J]. Sensors and Actuators B: Chemical, 2018, 263: 137-142. |
45 | WANG Chengjun, QIAN Ying. A TICT-active orthogonal D-A type probe phenothiazine-BODIPY for ratiometric response of hypochlorite and its application in living cells[J]. Journal of Luminescence, 2019, 210: 261-268. |
46 | SONG Haohan, ZHOU Yanmei, XU Chenggong, et al. A dual-function fluorescent probe: sensitive detection of water content in commercial products and rapid detection of hypochlorite with a large Stokes shift[J]. Dyes and Pigments, 2019, 162: 160-167. |
47 | JIN Yue, Minghuan LYU, TAO Yuanfang, et al. A water-soluble BODIPY-based fluorescent probe for rapid and selective detection of hypochlorous acid in living cells[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 219: 569-575. |
48 | CHOI Myunggil, Hyein RYU, Minjeoung CHO, et al. Dual signaling of hypochlorite in tap water by selective oxidation of phenylselenylated dichlorofluorescein[J]. Sensors and Actuators B: Chemical, 2017, 244: 307-313. |
49 | LOU Zhangrong, LI Peng, PAN Qiang, et al. A reversible fluorescent probe for detecting hypochloric acid in living cells and animals: utilizing a novel strategy for effectively modulating the fluorescence of selenide and selenoxide[J]. Chemical Communications, 2013, 49(24): 2445-2447. |
50 | SUN Chunlong, DU Wen, WANG Peng, et al. A novel mitochondria-targeted two-photon fluorescent probe for dynamic and reversible detection of the redox cycles between peroxynitrite and glutathione[J]. Biochemical and Biophysical Research Communications, 2017, 494(3/4): 518-525. |
51 | WANG Bingshuai, LI Peng, YU Fabiao, et al. A reversible fluorescence probe based on Se-BODIPY for the redox cycle between HClO oxidative stress and H2S repair in living cells[J]. Chemical Communications, 2013, 49(10): 1014-1016. |
52 | SHI Wenjing, HUANG Yan, LIU Wancui, et al. A BODIPY-based “off-on” fluorescent probe for fast and selective detection of hypochlorite in living cells[J]. Dyes and Pigments, 2019, 170: 107566. |
53 | GAO Yunling, PAN Yong, CHI Yu, et al. A reactive turn-on fluorescence probe for hypochlorous acid and its bioimaging application[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 206: 190-196. |
54 | XU Xiuxiu, QIAN Ying. A novel pyridyl triphenylamine-BODIPY aldoxime: naked-eye visible and fluorometric chemodosimeter for hypochlorite[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 183: 356-361. |
55 | HU Cunjie, LI Jianping, YAN Liqiang. A fluorescent probe for hypochlorite with colorimetric and fluorometric characteristics and imaging in living cells[J]. Analytical Biochemistry, 2019, 566: 32-36. |
56 | HAN Juan, LI Yuanyuan, WANG Yun, et al. A water-soluble fluorescent probe for monitoring hypochlorite in water and in living cells[J]. Sensors and Actuators B: Chemical, 2018, 273: 778-783. |
57 | LI Daoxue, FENG Yan, LIN Jizhi, et al. A mitochondria-targeted two-photon fluorescent probe for highly selective and rapid detection of hypochlorite and its bio-imaging in living cells[J]. Sensors and Actuators B: Chemical, 2016, 222: 483-491. |
58 | GUO Bingpeng, NIE Hailiang, YANG Wen, et al. A highly sensitive and rapidly responding fluorescent probe with a large Stokes shift for imaging intracellular hypochlorite[J]. Sensors and Actuators B: Chemical, 2016, 236: 459-465. |
59 | HOU Linxi, SHANGGUAN Mingqin, LU Zhen, et al. A cyclometalated iridium(III) complex-based fluorescence probe for hypochlorite detection and its application by test strips[J]. Analytical Biochemistry, 2019, 566: 27-31. |
60 | MALKONDU S, ERDEMIR S, KARAKURT S. Red and blue emitting fluorescent probe for cyanide and hypochlorite ions: biological sensing and environmental analysis[J]. Dyes and Pigments, 2020, 174: 108019. |
61 | NING Yaoyao, CUI Jihong, LU Yiwei, et al. De novo design and synthesis of a novel colorimetric fluorescent probe based on naphthalenone scaffold for selective detection of hypochlorite and its application in living cells[J]. Sensors and Actuators B: Chemical, 2018, 269: 322-330. |
62 | TANG Yong, LI Yuanyuan, HAN Juan, et al. A coumarin based fluorescent probe for rapidly distinguishing of hypochlorite and copper(II) ion in organisms[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 208: 299-308. |
63 | WANG Yun, XIA Jinchen, HAN Juan, et al. A fast-responsive fluorescent probe based on BODIPY dye for sensitive detection of hypochlorite and its application in real water samples[J]. Talanta, 2016, 161: 847-853. |
64 | ZHAO Xiongjie, JIANG Yuren, CHEN Yixuan, et al. A new "off-on" NIR fluorescence probe for determination and bio-imaging of mitochondrial hypochlorite in living cells and zebrafish[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 219: 509-516. |
65 | LI Yuanyuan, TANG Yong, GAO Mengmeng, et al. A sensitive BODIPY-based fluorescent probe suitable for hypochlorite detection in living cells[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 352: 65-72. |
66 | TANG Xu, ZHU Zhi, WANG Yun, et al. A cyanobiphenyl based fluorescent probe for rapid and specific detection of hypochlorite and its bio-imaging applications[J]. Sensors and Actuators B: Chemical, 2018, 262: 57-63. |
67 | ZHAO Yun, LI Haoyang, XUE Yuanyuan, et al. A phenanthroimidazole-based fluorescent probe for hypochlorous acid with high selectivity and its bio-imaging in living cells[J]. Sensors and Actuators B: Chemical, 2017, 241: 335-341. |
68 | TANG Xu, ZHU Zhi, LIU Renjie, et al. A novel ratiometric and colorimetric fluorescent probe for hypochlorite based on cyanobiphenyl and its applications[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 219: 576-581. |
69 | LI Mengru, DU Fangkai, XUE Pei, et al. An AIE fluorescent probe with a naphthalimide derivative and its application for detection of hypochlorite and imaging inside living cells[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 227: 117760. |
70 | GAO Yunling, PAN Yong, HE Yuanyuan, et al. A fast-response, red emission aza-BODIPY-hydrazone-based chemodosimeter for selective detection of HClO[J]. Sensors and Actuators B: Chemical, 2018, 269: 151-157. |
71 | HE Xiaojun, CHEN Hong., XU Chuchu, et al. Ratiometric and colorimetric fluorescent probe for hypochlorite monitor and application for bioimaging in living cells, bacteria and zebrafish[J]. Journal of Hazardous Materials, 2020, 388: 122029. |
72 | TANG Xu, ZHU Zhi, WANG Zengkai, et al. Developed a novel quinazolinone based turn-on fluorescence probe for highly selective monitoring hypochlorite and its bioimaging applications[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 228: 117845. |
73 | Min Jeoung CHO, Hyein RYU, LEE Hyo Jin, et al. Selective fluorescence signaling of hypochlorite in tap water by oxidative hydrolysis of sulfonhydrazone[J]. Sensors and Actuators B: Chemical, 2017, 241: 285-291. |
74 | LIU Jinsheng, SHANGGUAN Mingqin., ZENG Xiaoyang, et al. Phosphorescent iridium(III) complex for efficient sensing of hypochlorite and imaging in living cells[J]. Analytical Biochemistry, 2020, 592: 113573. |
75 | LI Xiaohong, CHEN Weilin, LI Yangguang, et al. Multi-functional rare earth-containing polyoxometalates achieving high-efficiency tumor therapy and visual fluorescence monitoring[J]. Inorganic Chemistry Communications, 2019, 104: 40-47. |
76 | LU Zhen, SHANGGUAN Mingqin, JIANG Xingzong, et al. A water-soluble cyclometalated iridium(III) complex with fluorescent sensing capability for hypochlorite[J]. Dyes and Pigments, 2019, 171: 107715. |
77 | PAN Hong, XU Shuo, NI Yonghong. Rare-earth post-modified Zn-based coordination polymer microspheres: simple room-temperature preparation, fluorescent performances and application for detection of tryptophane[J]. Sensors and Actuators B: Chemical, 2019, 283: 731-739. |
78 | SCHMUED L, RAYMICK J. Introducing Euro-Glo, a rare earth metal chelate with numerous applications for the fluorescent localization of myelin and amyloid plaques in brain tissue sections[J]. Journal of Neuroscience Methods, 2017, 279: 79-86. |
79 | YANG Bo, CHEN Hui, ZHENG Zhuo, et al. Application of upconversion rare earth fluorescent nanoparticles in biomedical drug delivery system[J]. Journal of Luminescence, 2020, 223: 117226. |
80 | ZHANG Xiaoxiong, ZHANG Wenjun, LI Yingjie, et al. Hybrid luminescent materials of graphene oxide and rare-earth complexes with stronger luminescence intensity and better thermal stability[J]. Dyes and Pigments, 2017, 140: 150-156. |
81 | ZHOU Zhan, LI Xiangqian, TANG Yiping, et al. Oxidative deoximation reaction induced recognition of hypochlorite based on a new fluorescent lanthanide-organic framework[J]. Chemical Engineering Journal, 2018, 351: 364-370. |
82 | ZHOU Zhan, WU Haixia, LI Feifei, et al. Hypochlorite responsive ratiometric fluorescent switch and logic gates based on lanthanide functionalized polymer nanosphere[J]. Dyes and Pigments, 2020, 174: 108033. |
83 | YI Sili, LU Zhen, LIN Yandai, et al. A novel mitochondria-targeted phosphorescence probe for hypochlorite ions detection in living cells[J]. Talanta, 2020, 209: 120516. |
84 | ZHU Baocun, WU Liu, ZHANG Meng, et al. A highly specific and ultrasensitive fluorescent probe for monitoring hypochlorous acid and its applications in live cells[J]. Sensors and Actuators B: Chemical, 2018, 267: 589-596. |
85 | LIU Jingwei, YIN Zheng. A novel NIR-emissive probe with large Stokes shift for hypochlorite detection and imaging in living cells[J]. Talanta, 2019, 196: 352-356. |
86 | SHI Lei, YANG Sheng, HONG Haojia, et al. A novel target and pH dual-activatable fluorescent probe for precisely detecting hypochlorite in lysosomes[J]. Analytica Chimica Acta, 2020, 1094: 122-129. |
87 | LIU Caiyun, JIA Pan, ZHUANG Zihan, et al. A water-soluble and highly specific fluorescent probe with large Stokes shift for imaging basal HOCl in living cells and zebrafish[J]. Sensors and Actuators B: Chemical, 2019, 291: 243-249. |
88 | LIU Caiyun, JIA Pan, WU Liu, et al. Rational design of a highly efficient two-photon fluorescent probe for tracking intracellular basal hypochlorous acid and its applications in identifying tumor cells and tissues[J]. Sensors and Actuators B: Chemical, 2019, 297: 126731. |
89 | DU Yuchao, WANG Bowei, JIN Di, et al. Dual-site fluorescent probe for multi-response detection of ClO- and H2O2 and bio-imaging[J]. Analytica Chimica Acta, 2020, 1103: 174-182. |
90 | WANG Qing, LIU Chang, CHANG Jiajia, et al. Novel water soluble styrylquinolinium boronic acid as a ratiometric reagent for the rapid detection of hypochlorite ion[J]. Dyes and Pigments, 2013, 99(3): 733-739. |
91 | GAO Zheng, ZHANG Xu, ZHENG Meiling, et al. Synthesis of a water soluble red fluorescent dye and its application to living cells imaging[J]. Dyes and Pigments, 2015, 120: 37-43. |
92 | LAN Jinshuai, GUO Jing, JIANG Xiaoyi, et al. A new dicyanoisophorone-based ratiometric and colorimetric near-infrared fluorescent probe for specifically detecting hypochlorite and its bioimaging on a model of acute inflammation[J]. Analytica Chimica Acta, 2020, 1094: 70-79. |
93 | SHU Wei, YAN Liangguo, WANG Zuokai, et al. A novel visual and far-red fluorescent dual-channel probe for the rapid and sensitive detection of hypochlorite in aqueous solution and living cells[J]. Sensors and Actuators B: Chemical, 2015, 221: 1130-1136. |
[1] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[2] | SUN Xudong, ZHAO Yuying, LI Shirui, WANG Qi, LI Xiaojian, ZHANG Bo. Textual quantitative analysis on China’s local hydrogen energy development policies [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3478-3488. |
[3] | XU Guobin, LIU Honghao, LI Jie, GUO Jiaqi, WANG Qi. Preparation and properties of ZnO QDs water-based inkjet fluorescent ink [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3114-3122. |
[4] | ZHANG Fang, GUO Kunpeng, LIANG Chunping, YOU Xuerui, ZHANG Zhichao. Design, synthesis and application research for an organic luminescent molecule with aggregation induced emission [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3097-3104. |
[5] | JIN Yong, CHENG Yi, BAI Dingrong, ZHANG Chenxi, WEI Fei. Fluidization research and development in China [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2761-2780. |
[6] | LI Jianxiong, GENG Shuang, HU Shujian, ZHOU Ming. Research progress on functional structure design and application of liposome delivery system [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2003-2012. |
[7] | SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023. |
[8] | WU Heng, LI Yinlong, YAN Gang, XIONG Tong, ZHANG Hao, TAO Kui. Vapor-liquid separation technology in refrigeration/heat pump systems [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1129-1142. |
[9] | CHEN Bangfu, OUYANG Ping, LI Yuhan, DUAN Youyu, DONG Fan. Application of ZnSn(OH)6-based nanomaterials in environmental photocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 756-764. |
[10] | ZHOU Chen, FU Jie, ZHANG Guojun. National Natural Science Foundation of China's fund applications and grants in 2022: a review based on Chemical Engineering & Industrial Chemistry [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 553-558. |
[11] | PAN Yuelei, CHENG Xudong, YAN Mingyuan, HE Pan, ZHANG Heping. Silica aerogel and its application in the field of thermal insulation [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 297-309. |
[12] | HUANG Yuefeng, MA Lisha, ZHANG Lili, WANG Zhiguo. Research progress on functional application of lignocellulose composite biomass film materials [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4840-4854. |
[13] | ZHU Xuedan, YAO Yali, MA Lili, WANG Jiaxin, YANG Jie, PENG Lei, HE Jinmei, QU Mengnan. Progress in preparation and application of superhydrophobic materials based on polyvinyl chloride [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3676-3688. |
[14] | MA Dianpu, LI Jun, QIN Deqing, YUAN Yingjie, PAN Fei, FU Zewei. Research progress on the preparation method and application of zinc stannate nanomaterials [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3113-3126. |
[15] | SHAO Bin, SUN Zheyi, ZHANG Yun, PAN Fenghongkang, ZHAO Kaiqing, HU Jun, LIU Honglai. Recent progresses in CO2 to syngas and high value-added products [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1136-1151. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 631
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 635
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |