Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 3526-3535.DOI: 10.16085/j.issn.1000-6613.2020-1358
• Resources and environmental engineering • Previous Articles Next Articles
LI Wei1(), WANG Xinfen1, SHI Lixiang1, SONG Yao1, ZHANG Jie2, DU Xianyuan3
Received:
2020-07-14
Revised:
2020-09-10
Online:
2021-06-22
Published:
2021-06-06
Contact:
LI Wei
李薇1(), 王信粉1, 时利香1, 宋瑶1, 张杰2, 杜显元3
通讯作者:
李薇
作者简介:
李薇(1974—),女,教授,博士生导师,研究方向为环境污染防治技术和能源环境工程。E-mail:基金资助:
CLC Number:
LI Wei, WANG Xinfen, SHI Lixiang, SONG Yao, ZHANG Jie, DU Xianyuan. Remediation of pyrene-contaminated soil using mixed surfactants solution[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3526-3535.
李薇, 王信粉, 时利香, 宋瑶, 张杰, 杜显元. 表面活性剂复配体系修复芘污染土壤实验[J]. 化工进展, 2021, 40(6): 3526-3535.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1358
鼠李糖脂α | 皂素1-α |
---|---|
0 | 1 |
0.1 | 0.9 |
0.2 | 0.8 |
0.3 | 0.7 |
0.4 | 0.6 |
0.5 | 0.5 |
0.6 | 0.4 |
0.7 | 0.3 |
0.8 | 0.2 |
0.9 | 0.1 |
1 | 0 |
鼠李糖脂α | 皂素1-α |
---|---|
0 | 1 |
0.1 | 0.9 |
0.2 | 0.8 |
0.3 | 0.7 |
0.4 | 0.6 |
0.5 | 0.5 |
0.6 | 0.4 |
0.7 | 0.3 |
0.8 | 0.2 |
0.9 | 0.1 |
1 | 0 |
参数 | 试验梯度 |
---|---|
浓度/mg·L-1 | 200、800、1000、1400、1800、2000 |
pH | 2、4、6、8、10、12 |
低无机盐浓度/mmol·L-1 | 0.01、0.05、0.1、0.2、0.3 |
高无机盐浓度/mmol·L-1 | 10、50、100、200、300 |
洗脱液次数 | 0、1、2、3 |
参数 | 试验梯度 |
---|---|
浓度/mg·L-1 | 200、800、1000、1400、1800、2000 |
pH | 2、4、6、8、10、12 |
低无机盐浓度/mmol·L-1 | 0.01、0.05、0.1、0.2、0.3 |
高无机盐浓度/mmol·L-1 | 10、50、100、200、300 |
洗脱液次数 | 0、1、2、3 |
编号 | A:表面活性剂浓度 /mg·L-1 | B:pH | C:MgCl2浓度 /mmol·L-1 | |||
---|---|---|---|---|---|---|
编码水平 | 实际水平 | 编码水平 | 实际水平 | 编码水平 | 实际水平 | |
1 | -1 | 800 | 0 | 8 | 1 | 0.3 |
2 | 0 | 1400 | 0 | 8 | 0 | 0.2 |
3 | 1 | 2000 | 0 | 8 | 1 | 0.3 |
4 | 0 | 1400 | 1 | 12 | -1 | 0.1 |
5 | 1 | 2000 | 1 | 12 | 0 | 0.2 |
6 | 0 | 1400 | 1 | 12 | 1 | 0.3 |
7 | -1 | 800 | -1 | 4 | 0 | 0.2 |
8 | 0 | 1400 | 0 | 8 | 0 | 0.2 |
9 | 0 | 1400 | -1 | 4 | -1 | 0.1 |
10 | 1 | 2000 | -1 | 4 | 0 | 0.2 |
11 | 0 | 1400 | 0 | 8 | 0 | 0.2 |
12 | -1 | 800 | 0 | 8 | -1 | 0.1 |
13 | 0 | 1400 | -1 | 4 | 1 | 0.3 |
14 | 1 | 2000 | 0 | 8 | -1 | 0.1 |
15 | 0 | 1400 | 0 | 8 | 0 | 0.2 |
16 | -1 | 800 | 1 | 12 | 0 | 0.2 |
17 | 0 | 1400 | 0 | 8 | 0 | 0.2 |
编号 | A:表面活性剂浓度 /mg·L-1 | B:pH | C:MgCl2浓度 /mmol·L-1 | |||
---|---|---|---|---|---|---|
编码水平 | 实际水平 | 编码水平 | 实际水平 | 编码水平 | 实际水平 | |
1 | -1 | 800 | 0 | 8 | 1 | 0.3 |
2 | 0 | 1400 | 0 | 8 | 0 | 0.2 |
3 | 1 | 2000 | 0 | 8 | 1 | 0.3 |
4 | 0 | 1400 | 1 | 12 | -1 | 0.1 |
5 | 1 | 2000 | 1 | 12 | 0 | 0.2 |
6 | 0 | 1400 | 1 | 12 | 1 | 0.3 |
7 | -1 | 800 | -1 | 4 | 0 | 0.2 |
8 | 0 | 1400 | 0 | 8 | 0 | 0.2 |
9 | 0 | 1400 | -1 | 4 | -1 | 0.1 |
10 | 1 | 2000 | -1 | 4 | 0 | 0.2 |
11 | 0 | 1400 | 0 | 8 | 0 | 0.2 |
12 | -1 | 800 | 0 | 8 | -1 | 0.1 |
13 | 0 | 1400 | -1 | 4 | 1 | 0.3 |
14 | 1 | 2000 | 0 | 8 | -1 | 0.1 |
15 | 0 | 1400 | 0 | 8 | 0 | 0.2 |
16 | -1 | 800 | 1 | 12 | 0 | 0.2 |
17 | 0 | 1400 | 0 | 8 | 0 | 0.2 |
时间/min | 乙腈(质量分数)/% | 水(质量分数)/% |
---|---|---|
0 | 60 | 40 |
8 | 60 | 40 |
18 | 100 | 0 |
时间/min | 乙腈(质量分数)/% | 水(质量分数)/% |
---|---|---|
0 | 60 | 40 |
8 | 60 | 40 |
18 | 100 | 0 |
数据源 | 总方差 | 自由度 | 平均方差 | F | P |
---|---|---|---|---|---|
模型 | 1505.36 | 9 | 167.26 | 9.57 | 0.0035 |
A | 132.79 | 1 | 132.79 | 7.6 | 0.0282 |
B | 302.88 | 1 | 302.88 | 17.33 | 0.0042 |
C | 70.3 | 1 | 70.3 | 4.02 | 0.0849 |
AB | 323.14 | 1 | 323.14 | 18.49 | 0.0036 |
AC | 80.7 | 1 | 80.7 | 4.62 | 0.0687 |
BC | 29.22 | 1 | 29.22 | 1.67 | 0.237 |
A2 | 153.25 | 1 | 153.25 | 8.77 | 0.0211 |
B2 | 301.5 | 1 | 301.5 | 17.25 | 0.0043 |
C2 | 59 | 1 | 59 | 3.38 | 0.1087 |
残差 | 122.32 | 7 | 17.47 | ||
失拟值 | 100 | 3 | 33.33 | 5.97 | 0.0585 |
纯误差 | 22.32 | 4 | 5.58 | ||
总和 | 1627.68 | 16 | |||
R2 | 0.9445 | ||||
调整的R2 | 0.9249 | ||||
预测的R2 | 0.8282 |
数据源 | 总方差 | 自由度 | 平均方差 | F | P |
---|---|---|---|---|---|
模型 | 1505.36 | 9 | 167.26 | 9.57 | 0.0035 |
A | 132.79 | 1 | 132.79 | 7.6 | 0.0282 |
B | 302.88 | 1 | 302.88 | 17.33 | 0.0042 |
C | 70.3 | 1 | 70.3 | 4.02 | 0.0849 |
AB | 323.14 | 1 | 323.14 | 18.49 | 0.0036 |
AC | 80.7 | 1 | 80.7 | 4.62 | 0.0687 |
BC | 29.22 | 1 | 29.22 | 1.67 | 0.237 |
A2 | 153.25 | 1 | 153.25 | 8.77 | 0.0211 |
B2 | 301.5 | 1 | 301.5 | 17.25 | 0.0043 |
C2 | 59 | 1 | 59 | 3.38 | 0.1087 |
残差 | 122.32 | 7 | 17.47 | ||
失拟值 | 100 | 3 | 33.33 | 5.97 | 0.0585 |
纯误差 | 22.32 | 4 | 5.58 | ||
总和 | 1627.68 | 16 | |||
R2 | 0.9445 | ||||
调整的R2 | 0.9249 | ||||
预测的R2 | 0.8282 |
5 | PRAJAPATI Santosh Kumar, TRIPATHI B D. Biomonitoring seasonal variation of urban air polycyclic aromatic hydrocarbons (PAHs) using Ficus benghalensis leaves[J]. Environmental Pollution, 2008, 151(3): 543-548. |
6 | 宋文婷, 郭静, 杨倩倩, 等. 污泥有机污染物降解研究进展[J]. 化工进展, 2020, 39(1): 380-386. |
SONG Wenting, GUO Jing, YANG Qianqian, et al. Research progress on degradation of sludge organic pollutants[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 380-386. | |
7 | MULLIGAN Catherine N, YONG Raymond N. Natural attenuation of contaminated soils[J]. Environment International, 2004, 30(4): 587-601. |
8 | 王晓峰, 陈晨, 宋瑶, 等. 槐糖脂-LAS-Na2SiO3复配修复石油污染土壤影响因素分析[J]. 化工进展, 2019, 38(6): 2933-2938. |
WANG Xiaofeng, CHEN Chen, SONG Yao, et al. Analysis on influencing factors of petroleum contaminated soil remediation with sophorolipids-LAS-Na2SiO3[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2933-2938. | |
9 | 王龙, 刘会娥, 于云飞, 等. 槐糖脂用于含油砂质土壤处理及石油资源回收[J]. 化工进展, 2020, 39(5): 1930-1937. |
WANG Long, LIU Hui’e, YU Yunfei, et al. Treatment of crude oil contaminated sand soil and oil recovery using sophorolipid microemulsion[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1930-1937. | |
10 | EDWARDS David A, LIU Zhongbao, LUTHY Richard G. Experimental data and modeling for surfactant micelles, HOCs, and soil[J]. Journal of Environmental Engineering, 1994, 120(1): 23-41. |
11 | 王宏光, 郑连伟. 表面活性剂在多环芳烃污染土壤修复中的应用[J]. 化工环保, 2006, 26(6): 471-474. |
WANG Hongguang, ZHENG Lianwei. Application of surfactant in remediation of polycyclic aromatic hydrocarbons contaminated soil[J]. Environmental Protection of Chemical Industry, 2006, 26(6): 471-474. | |
12 | ZHU Lizhong, FENG Shaoliang. Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic-nonionic surfactants[J]. Chemosphere, 2003, 53(5): 459-467. |
1 | COULON Frederic, JONES Kevin, LI Hong, et al. China’s soil and groundwater management challenges: lessons from the UK’s experience and opportunities for China[J]. Environment International, 2016, 91: 196-200. |
2 | 姜永海, 韦尚正, 席北斗, 等. PAHs在我国土壤中的污染现状及其研究进展[J]. 生态环境学报, 2009, 18(3): 1176-1181. |
JIANG Yonghai, WEI Shangzheng, XI Beidou, et al. Polycyclic aromatic hydrocarbons(PAHs) pollution in soils in China: recent advances and future prospects[J]. Ecology and Environmental Sciences, 2009, 18(3): 1176-1181. | |
3 | HILL Alex J, GHOSHAL Subhasis. Micellar solubilization of naphthalene and phenanthrene from nonaqueous-phase liquids[J]. Environmental Science & Technology, 2002, 36(18): 3901-3907. |
4 | MULLIGAN C N, YONG R N, GIBBS B. F. Surfactant-enhanced remediation of contaminated soil: a review[J]. Engineering Geology, 2001, 60(1/2/3/4): 371-380. |
13 | 朱利中, 冯少良. 混合表面活性剂对多环芳烃的增溶作用及机理[J]. 环境科学学报, 2002, 22(6): 774-778. |
ZHU Lizhong, FENG Shaoliang. Water solubility enhancement of polycyclic aromatic hydrocarbons by mixed surfactant solutions[J]. Acta Scientiae Circumstantiae, 2002, 22(6): 774-778. | |
14 | 倪贺伟. 阴-非离子混合表面活性剂强化植物微生物联合修复多环芳烃污染土壤[D]. 杭州: 浙江大学, 2014. |
NI Hewei. Enhancing plant-microbe associated remediation of PAHs contaminated soil by anionic-nonionic mixed surfactants[D]. Hangzhou: Zhejiang University, 2014. | |
15 | 张鑫. 复配表面活性剂增溶洗脱修复多环芳烃污染土壤实验[D]. 徐州: 中国矿业大学, 2017. |
ZHANG Xin. The experiment of remediation of PAHs contaminated soil using mixed surfactant solubilization elution[D]. Xuzhou: China University of Mining and Technology, 2017. | |
16 | 孙璐. 阴-非离子混合表面活性剂增溶洗脱土壤有机污染的作用及机理[D]. 杭州: 浙江大学, 2008. |
SUN Lu. Enhanced ryegrass uptake of PAHs by anionic-nonionic mixed surfactants[D]. Hangzhou: Zhejiang University, 2008. | |
17 | 彭立君. 鼠李糖脂修复重金属和多环芳烃(PAHs)复合污染土壤研究[D]. 长沙: 湖南大学, 2008. |
PENG Lijun. Rhamnolipid for remediation of heavy metals and PAHs combined contaminated soil[D]. Changsha: Hunan University, 2008. | |
18 | 宋赛赛. 皂角苷对重金属-PAHs复合污染土壤的强化修复作用及机理[D]. 杭州: 浙江大学, 2014. |
SONG Saisai. The role and mechanism for saponin to remediate co-contaminated soils with heavy metals and PAHs[D]. Hangzhou: Zhejiang University, 2014. | |
19 | 王雅辉, 吕文英, 邹雪刚, 等. 响应面法优化胡敏素对Cu2+的吸附及机理研究[J]. 环境科学学报, 2017, 37(2): 624-632. |
WANG Yahui, Wenying LYU, ZOU Xuegang. The study of adsorption mechanism of Cu(Ⅱ) from aqueous solutions by humin with response surface methodology[J]. Acta Scientiae Circumstantiae, 2017, 37(2): 624-632. | |
20 | ARYAL Manendra, Maria LIAKOPOULOU-KYRIAKIDES. Biodegradation and kinetics of phenanthrene and pyrene in the presence of nonionic surfactants by Arthrobacter, Strain Sphe3[J]. Water Air & Soil Pollution, 2013, 224(2): 1426. |
21 | LIANG Xujun, ZHANG Menglu, GUO Chuling, et al. Competitive solubilization of low-molecular-weight polycyclic aromatic hydrocarbons mixtures in single and binary surfactant micelles[J]. Chemical Engineering Journal, 2014, 244(10): 522-530. |
22 | YANG Xingjian, LU Guining, SHE Bojia, et al. Cosolubilization of 4,4'-dibromodiphenyl ether, naphthalene and pyrene mixtures in various surfactant micelles[J]. Chemical Engineering Journal, 2015, 260: 74-82. |
23 | YANG Y, RATTE D, SMETS B F, et al. Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption[J]. Chemosphere, 2001, 43(8): 1013-1021. |
24 | YEOM I T, GHOSH M M, COX C D. Kinetic aspects of surfactant solubilization of soil-bound polycyclic aromatic hydrocarbons[J]. Environmental Science & Technology, 1996, 30(5): 1589-1595. |
25 | YEOM Ick-Tae, GHOSH Mriganka M. Mass transfer limitation in pah-contaminated soil remediation[J]. Water Science and Technology, 1998, 37(8): 111-118. |
26 | 田丹妮, 汪如婷, 王鸿雁, 等. 鼠李糖脂对萘、菲、芘三种物质增溶作用研究[J]. 西北民族大学学报(自然科学版), 2015, 36(3): 33-37. |
TIAN Danni, WANG Ruting, WANG Hongyan, et al. Study on solubilization of rhamnolipid on naphthalene, phenanthrene and pyrene[J]. Journal of Northwest University for Nationalities (Natural Science), 2015, 36(3): 33-37. | |
27 | 杨娟娟, 楼林洁, 周文军. 皂角苷对芘的增溶作用及影响因素[J]. 环境科学学报, 2011, 31(1): 172-176. |
YANG Juanjuan, LOU Linjie, ZHOU Wenjun. Enhanced solubilization of pyrene by saponin, a plant-derived biosurfactant[J]. Acta Scientiae Circumstantiae, 2011, 31(1): 172-176. | |
28 | 闫端, 余晖, 黄国和, 等. 双子表面活性剂CG12-3-12、鼠李糖脂与TX-100对多环芳烃增溶作用的比较研究[J]. 环境科学学报, 2015, 35(1): 229-237. |
YAN Duan, YU Hui, HUANG Guohe, et al. Effects of gemini surfactant CG12-3-12, rhamnolipid and triton X-100 on solubility enhancement of PAHs: a comparative study[J]. Acta Scientiae Circumstantiae, 2015, 35(1): 229-237. | |
29 | 韩颖. 阴离子/两性离子表面活性剂复配体系在油水界面聚集行为研究[D]. 大庆: 东北石油大学, 2018. |
HAN Ying. Molecular dynamics simulation of the aggregation behavior of anionic/zwitterionic surfactant mixed system at oil/water interface[D]. Daqing: Northeast Petroleum University, 2018. | |
30 | LIU Youshi, MA Manying, SHI Zhou. Application of rhamnolipid biosurfactant for removing polychlorinated biphenyls from contaminated soil[J]. Advanced Materials Research, 2011, 233/234/235: 608-613. |
31 | Ann GIOVANNITTI-JENSEN, Myers RAYMOND H. Graphical assessment of the prediction capability of response surface designs[J]. Technometrics, 1989, 31(2): 159-171. |
[1] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[2] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[3] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[4] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[5] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[6] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[7] | LI Lanyu, HUANG Xinye, WANG Xiaonan, QIU Tong. Reflection and prospects on the intelligent transformation of chemical engineering research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. |
[8] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[9] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[10] | LI Xue, WANG Yanjun, WANG Yuchao, TAO Shengyang. Recent advances in bionic surfaces for fog collection [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2486-2503. |
[11] | LU Xingfu, DAI Bo, YANG Shiliang. Super-quadric discrete element method investigation of mixing behaviors of cylindrical particles in a rotating drum [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2252-2261. |
[12] | TIAN Qikai, ZHENG Haiping, ZHANG Shaobin, ZHANG Jing, YU Ziyi. Advances in mixing enhanced microfluidic channels [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1677-1687. |
[13] | ZOU Yincai, LI Qingguo, WU Hui, ZHONG Xiaobing, CHEN Xianzhi. Heat transfer simulation and optimization of missile borne phase change heat sink [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1248-1256. |
[14] | SUN Xiao, ZHU Guangtao, PEI Aiguo. Industrialization and research progress of hydrogen liquefier [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117. |
[15] | ZHANG Jianwei, XU Rui, ZHANG Zhongchuang, DONG Xin, FENG Ying. Mixing characteristics of concentration field in impingement flow reactor based on convolutional neural network [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 658-668. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |