1 | JIN S, XIAO Z, LI C, et al. Catalytic hydrodeoxygenation of anisole as lignin model compound over supported nickel catalysts[J]. Catalysis Today, 2014, 234: 125-132. | 2 | 倪启亮, 王敦球, 戚拓业. 木质素降解酶的酶活测定方法探讨[J]. 广西农学报, 2008, 23(2): 58-61. | 2 | NI Q L, WANG D Q, QI T Y. Discussion on methods of ligninolytic enzymes activity mensuration[J]. Journal of Guangxi Agriculture, 2008, 23(2): 58-61. | 3 | NGUYEN J D, MATSUURA B S, STEPHENSON C R J. A photochemical strategy for lignin degradation at room temperature[J]. Journal of the American Chemical Society, 2014, 136(4): 1218-1221. | 4 | 张保平, 郭美辰, 刘运, 等. 木质素及其衍生物在提取冶金中的研究进展[J]. 生物加工过程, 2018, 16(6): 84-91. | 4 | ZHANG B P, GUO M C, LIU Y, et al. Progress of lignin and its derivatives in extractive metallurgy[J]. Chinese Journal of Bioprocess Engineering, 2018, 16(6): 84-91. | 5 | 崔玉虎, 王奇, 苟光俊, 等. 木质素催化降解液化的研究进展[J]. 材料导报, 2017, 31(3): 112-116, 133. | 5 | CUI Y H, WANG Q, GOU G J, et al. Advances in catalytic degradation liquefaction of lignin[J]. Materials Review, 2017, 31(3): 112-116, 133. | 6 | 程芳, 朱瀛奎, 钟超, 等. 利用四甲基氢氧化铵提取小麦秸秆木质素及其结构表征[J]. 生物加工过程, 2019, 17(4): 418-423. | 6 | CHENG F, ZHU Y K, ZHONG C, et al. Extraction of lignin from wheat straw by tetramethyl ammonium hydroxide and its structure characterization[J]. Chinese Journal of Bioprocess Engineering, 2019, 17(4): 418-423. | 7 | 何国斌, 蔡少丽, 柯崇榕, 等. 灵芝EIM-40漆酶的分离纯化及酶学性质[J]. 生物加工过程, 2012, 10(2): 34-39. | 7 | HE G B, CAI S L, KE C R, et al. Purification and properties of laccase from Ganoderma EIM-40[J]. Chinese Journal of Bioprocess Engineering, 2012, 10(2): 34-39. | 8 | CAI Y J, WU H G, LIAO X R. et al. Purification and characterization of novel manganese peroxidase from Rhizoctonia sp. SYBC-M3[J]. Biotechnology & Bioprocess Engineering, 2010, 15(6): 1016-1021. | 9 | ASGHER M, IQBAL H M N, IRSHAD M. Characterization of purified and xerogel immobilized novel lignin peroxidase produced from Trametes versicolor IBL-04 using solid state medium of corncobs[J]. BMC Biotechnology, 2012, 12(1): 46. | 10 | 杨晔. 木质素降解酶研究进展[J]. 农业工程, 2014, 4(4): 48-51. | 10 | YANG Y. Review on lignin degradation enzyme[J]. Agricultural Engineering, 2014, 4(4): 48-51. | 11 | 林俊芳, 刘志明, 陈晓阳, 等. 真菌漆酶的酶活测定方法评价[J]. 生物加工过程, 2009, 7(4): 1-8. | 11 | LIN J F, LIU Z M, CHEN X Y, et al. Evaluation of assay methods for determining fungal laccase activity[J]. Chinese Journal of Bioprocess Engineering, 2009, 7(4): 1-8. | 12 | 葛宏华, 武赟, 肖亚中. 漆酶空间结构、反应机理及应用[J]. 生物工程学报, 2011, 27(2): 156-163. | 12 | GE H H, WU Y, XIAO Y Z. Structure, catalytic mechanism and applications of laccases: a review[J]. Chinese Journal of Biotechnology, 2011, 27(2): 156-163. | 13 | 马莹莹, 贾红华, 韦萍. 细菌漆酶的研究及应用进展[J]. 生物技术通报, 2013, 1(2): 41-48. | 13 | MA Y Y, JIA H H, WEI P. Progress in study and application of bacterial laccase[J]. Biotechnology Bulletin, 2013, 1(2): 41-48. | 14 | GUO L Q, LIN S X, ZHENG X B, et al. Production, purification and characterization of a thermostable laccase from a tropical white-rot fungus[J]. World Journal of Microbiology & Biotechnology, 2011, 27(3): 731-735. | 15 | ISABEL P, SUSANA C. Exploring the oxidation of lignin-derived phenols by a library of laccase mutants[J]. Molecules, 2015, 20(9): 15929-15943. | 16 | 靳蓉, 张飞龙. 漆酶的结构与催化反应机理[J]. 中国生漆, 2012, 31(4): 6-16. | 16 | JIN R, ZHANG F L. Structure and catalytic mechanism of laccase[J]. Journal of Chinese Lacquer, 2012, 31(4): 6-16. | 17 | PRABIN S, BISHNU J, JARINA J, et al. Isolation and physicochemical characterization of laccase from Ganoderma lucidum CDBT1 isolated from its native habitat in Nepal[J]. BioMed Research International, 2016(4): 1-10. | 18 | 高千千, 朱启忠. 漆酶-介体体系(LMS)及其应用[J]. 环境工程, 2009 (S1): 598-602. | 18 | GAO Q Q, ZHU Q Z. Laccase-mediator system(LMS) and its application[J]. Environmental Engineering, 2009(S1): 598-602. | 19 | MEKMOUCHE Y, SCHNEIDER L, ROUSSELOT-PAILLEY P, et al. Laccases as palladium oxidases[J]. Chemical Science, 2015, 6(2): 1247-1251. | 20 | 周稳, 管政兵, 蔡宇杰, 等. 芽胞杆菌漆酶的研究进展[J]. 微生物学通报, 2015, 42(7): 1372-1383. | 20 | ZHOU W, GUAN Z B, CAI Y J, et al. Progress in the Bacillus laccase[J]. Microbiology, 2015, 42(7): 1372-1383. | 21 | 林海龙. 木质纤维素生物炼制的研究进展[J]. 生物加工过程, 2017, 15(6): 50-60. | 21 | LIN H L. Research progress in biorefinery of lignocellulosic biomass[J]. Chinese Journal of Bioprocess Engineering, 2017, 15(6): 50-60. | 22 | MUNK L, SITARZ A K, KALYANI D C, et al. Can laccases catalyze bond cleavage in lignin?[J]. Biotechnology Advances, 2015, 33(1): 13-24. | 23 | IHSSEN J, REISS R, LUCHSINGER R, et al. Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli[J]. Scientific Reports, 2015, 5: 10465. | 24 | PRASETYO E N, KUDANGA T, STEINER W, et al. Antioxidant activity assay based on laccase-generated radicals[J]. Analytical & Bioanalytical Chemistry, 2009, 393(2): 679-687. | 25 | GUAN Z B, SONG C M, ZHANG N, et al. Overexpression, characterization, and dye-decolorizing ability of a thermostable, pH-stable, and organic solvent-tolerant laccase from Bacillus pumilus W3[J]. Journal of Molecular Catalysis B Enzymatic, 2014, 101: 1-6. | 26 | NIKOLA L, NATASA B, ZORAN V. Expression and characterization of a thermostable organic solvent-tolerant laccase from Bacillus licheniformis ATCC 9945a[J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 134: 390-395. | 27 | 胡平平, 付时雨, 李光日. 贝壳状革耳菌漆酶酶活测定方法分析[J]. 广州化学, 2001, 26(4): 24-29. | 27 | HU P P, FU S Y, LI G R. Methods of assaying laccase activity by Panus Conchatus[J]. Guangzhou Chemistry, 2001, 26(4): 22-27. | 28 | EICHLEROVA I, SNAJDR J, BALDRIAN P. Laccase activity in soils: considerations for the measurement of enzyme activity[J]. Chemosphere, 2012, 88(10): 1154-1160. | 29 | LIU H P, YU C, BING D, et al. Overexpression of a novel thermostable and chloride-tolerant laccase from Thermus thermophilus SG0.5JP17-16 in Pichia pastoris and its application in synthetic dye decolorization[J]. PLoS One, 2015, 10(3): e0119833. | 30 | 吴涓, 肖亚中, 王怡平, 等. 蜜环菌胞外漆酶酶活力的分光光度法测定[J]. 厦门大学学报(自然科学版), 2001, 40(4): 893-898. | 30 | WU J, XIAO Y Z, WANG Y P, et al. Spectrophotometric determination of extracellular laccase activity of Armillaria Mellea[J]. Journal of Xiamen University(Natural Science), 2001, 40(4): 893-898. | 31 | WANG T, XIANG Y Q, LIU X X, et al. A novel fluorimetric method for laccase activities measurement using Amplex Red as substrate[J]. Talanta, 2016, 162: 143-150. | 32 | KUMAR M, MISHRA A, SINGH S S, et al. Expression and characterization of novel laccase gene from Pandoraea sp. ISTKB and its application[J]. International Journal of Biological Macromolecules, 2018, 115: 308-316. | 33 | 陈明, 王林, 谭天, 等. 漆酶催化邻苯二酚开环的自由基反应机制[J]. 物理化学学报, 2017, 33(3): 620-626. | 33 | CHEN M, WANG L, TAN T, et al. Radical mechanism of laccase-catalyzed catechol ring-opening[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 620-626. | 34 | PASZCZY?SKI A, CRAWFORD R L, HUYNH V B. Manganese peroxidase of Phanerochaete chrysosporium: purification[J]. Methods in Enzymology, 1988, 161: 264-270. | 35 | 王凤娟, 李伟庆, 牟志美, 等. Paraconiothyium variable GHJ-4木质素降解酶的酶学性质[J]. 林业科学, 2017, 53(1): 94-100. | 35 | WANG F J, LI W Q, MOU Z M, et al. Enzymological characteristics of ligninolytic enzyme from Paraconiothyrium variabile GHJ-4[J]. Scientia Silvae Sinicae, 2017, 53(1): 94-100. | 36 | WONG D W S. Structure and action mechanism of ligninolytic enzymes[J]. Applied Biochemistry and Biotechnology, 2009, 157(2): 174-209. | 37 | HOFRICHTER M. Review: lignin conversion by manganese peroxidase (MnP)[J]. Enzyme & Microbial Technology, 2002, 30(4): 454-466. | 38 | HOFRICHTER M, ULLRICH R, PECYNA M J, et al. New and classic families of secreted fungal heme peroxidases[J]. Applied Microbiology & Biotechnology, 2010, 87(3): 871-897. | 39 | HAMMEL K E, CULLEN D. Role of fungal peroxidases in biological ligninolysis[J]. Current Opinion in Plant Biology, 2008, 11(3): 349-355. | 40 | SACK U, HOFRICHTER M, FRITSCHE W. Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii[J]. Fems Microbiology Letters, 1997, 152(2): 227-234. | 41 | 崔艳红, 韩庆功, 常魁珍, 等. 木质层孔菌产锰过氧化物酶条件的优化及酶学性质研究[J]. 饲料工业, 2012, 33(12): 59-63. | 41 | CUI Y H, HAN Q G, CHANG K Z, et al. Study on condition optimization of manganese peroxidase produced by Fomes lignosus and its enzymatic properties [J]. Feed Industry, 2012, 33(12): 59-63. | 42 | BILAL M, IQBAL M, HU H, et al. Mutagenicity and cytotoxicity assessment of biodegraded textile effluent by Ca-alginate encapsulated manganese peroxidase[J]. Biochemical Engineering Journal, 2016, 109: 153-161. | 43 | KONG W, CHEN H, LYU S, et al. Characterization of a novel manganese peroxidase from white-rot fungus Echinodontium taxodii 2538, and its use for the degradation of lignin-related compounds[J]. Process Biochemistry, 2016, 51(11): 1776-1783. | 44 | 查诚, 荚荣, 陶香林, 等. 裂褶菌F17锰过氧化物酶酶活力影响因素的响应面优化[J]. 生物工程学报, 2010, 26(3): 341-349. | 44 | ZHA C, JIA R, TAO X L, et al. Optimization of process variables for the manganese peroxidase of the white-rot fungus Schizophyllum sp. F17 by full factorial central composite design[J]. Chinese Journal of Biotechnology, 2010, 26(3): 341-349. | 45 | 周金燕, 张发群, 舒远才. 愈创木酚法测定锰过氧化物酶活力[J]. 纤维素科学与技术, 1993(1): 34-37. | 45 | ZHOU J Y, ZHANG F Q, SHU Y C. The determination of MnP activity by using guaiacol as substrate[J]. Journal of Cellulose Science and Technology, 1993(1): 34-37. | 46 | SUETOMI T, SAKAMOTO T, TOKUNAGA Y, et al. Effects of calmodulin on expression of lignin-modifying enzymes in Pleurotus ostreatus[J]. Current Genetics, 2015, 61(2): 127-140. | 47 | GOUD J V S, BINDU N S V S S S L H, SAMATHA B, et al. Lignolytic enzyme activities of wood decaying fungi from Andhra Pradesh[J]. Journal of the Indian Academy of Wood Science, 2011, 8(1): 26-31. | 48 | ARANTES V, SILVA E M, MILAGRES A M F. Optimal recovery process conditions for manganese-peroxidase obtained by solid-state fermentation of eucalyptus residue using Lentinula edodes[J]. Biomass and Bioenergy, 2011, 35(9): 4040-4044. | 49 | BONUGLI-SANTOS R C, DURRANT L R, SILVA M D, et al. Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi[J]. Enzyme & Microbial Technology, 2010, 46(1): 32-37. | 50 | 范鹏珍, 池玉杰, 惠非琼, 等. 杏鲍菇和乳白耙齿菌锰过氧化物酶活性规律的研究[J]. 中国林副特产, 2011(1): 1-4. | 50 | FAN P Z, CHI Y J, HUI F Q, et al. Detection on manganese peroxidase of Pleurotus eryngii and Irpex lacteus[J]. Forest By-product and Speciality in China, 2011(1): 1-4. | 51 | WARIISHI H, VALLI K, GOLD M H. Manganese() oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: kinetic mechanism and role of chelators[J]. Journal of Biological Chemistry, 1992, 267(33): 23688-23695. | 52 | 文自兰. 5种优势腐生真菌降解华山松针叶的酶活测定[J]. 微生物学通报, 2015, 42(4): 654-664. | 52 | WEN Z L. Enzyme activities on decomposing needle litter of Pinus armandii by five dominant saprophytic fungi[J]. Microbiology, 2015, 42(4): 654-664. | 53 | TIMOFEEVSKI S L, NIE G J, READING N S, et al. Substrate specificity of lignin peroxidase and a S168W variant of manganese peroxidase[J]. Archives of Biochemistry & Biophysics, 2000, 373(1): 147-153. | 54 | ZENG G M, CHENG M, HUANG D L, et al. Study of the degradation of methylene blue by semi-solid-state fermentation of agricultural residues with Phanerochaete chrysosporium and reutilization of fermented residues[J]. Waste Management, 2015, 38: 424-430. | 55 | 董明, 于晓龙, 孙暠, 等. 不同培养条件下锰过氧化物酶(MnP)的合成及其对甲基橙的降解[J]. 环境工程学报, 2015, 9(5): 2510-2514. | 55 | DONG M, YU X L, SUN H, et al. Manganese peroxidase (MnP) produced under different culture conditions and for degradation of methyl orange[J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2510-2514. | 56 | PRAVEEN K, USHA K Y, VISWANATH B, et al. Kinetic properties of manganese peroxidase from the mushroom Stereum ostrea and its ability to decolorize dyes[J]. Journal of Microbiology & Biotechnology, 2012, 22(11): 1540-1548. | 57 | KADRI T, ROUISSI T, BRAR S K, et al. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review[J]. Journal of Environmental Sciences, 2017, 29(1): 52-74. | 58 | PHAM L T M, KIM S J, KIM Y H. Improvement of catalytic performance of lignin peroxidase for the enhanced degradation of lignocellulose biomass based on the imbedded electron-relay in long-range electron transfer route[J]. Biotechnology for Biofuels, 2016, 9(1): 247. | 59 | 金剑, 康文丽, 生吉萍, 等. 云芝(Coriolus versicolor)木质素过氧化物酶(LiP)酶学性质分析[J]. 食品科学, 2010, 31(17): 224-227. | 59 | JIN J, KANG W L, SHENG J P, et al. Enzymological characteristics of lignin peroxidase(LiP) from Coriolus versicolor[J]. Food Science, 2010, 31(17): 224-227. | 60 | 丁梦璇, 刘炳梅, 张国庆, 等. 绿色糖单孢菌木质素过氧化物酶的分离纯化及鉴定[J]. 生物技术通报, 2011(8): 198-202. | 60 | DING M X, LIU B M, ZHANG G Q, et al. Purification and identification of lignin peroxidase from Saccharomonospora viridis[J]. Biotechnology Bulletin, 2011(8): 198-202. | 61 | YADAV M, SINGH S K, YADAVA S. Purification, characterisation and coal depolymerisation activity of lignin peroxidase from Lenzitus betulina MTCC-1183[J]. Applied Biochemistry & Microbiology, 2012, 48(6): 583-589. | 62 | FALADE A O, NWODO U U, IWERIEBOR B C, et al. Lignin peroxidase functionalities and prospective applications[J]. Microbiologyopen, 2017, 6(1): e00394. | 63 | GUPTA V K, KUBICEK C P, BERRIN J G, et al. Fungal enzymes for bio-products from sustainable and waste biomass[J]. Trends in Biochemical Sciences, 2016, 41: 633-645. | 64 | 刘洪涛, 朱启忠, 林书欣, 等. 裂褐菌木质素降解酶特性的研究[J]. 安徽农业科学, 2009, 37(6): 71-72. | 64 | LIU H T, ZHU Q Z, LIN S X, et al. Study on character of lignin-degradation enzyme of crack brown fungus[J]. Journal of Anhui Agricultural Sciences, 2009, 37(6): 71-72. | 65 | 高云航, 王巍, 勾长龙, 等. 响应面优化Bacillus licheniformis MX5产木质素过氧化物酶的发酵条件[J]. 中国农业大学学报, 2015, 20(5): 209-215. | 65 | GAO Y H, WANG W, GOU C L, et al. Response surface optimization of fermentation conditions for lignin peroxidase by Bacillus licheniformis MX5 [J]. Journal of China Agricultural University, 2015, 20(5): 209-215. | 66 | ARCHIBALD F S. A new assay for lignin-type peroxidases employing the dye azure B[J]. Applied & Environmental Microbiology, 1992, 58(9): 3110-3116. | 67 | BIBI I, BHATTI H N, ASGHE M. Bioremediation of wastewater containing reactive dyes by Agaricus bisporus A21: effect of supplements and redox mediators[J]. Pakistan Journal of Agricultural Sciences, 2013, 50(3): 445-453. | 68 | JING D. Improving the simultaneous production of laccase and lignin peroxidase from Streptomyces lavendulae by medium optimization[J]. Bioresource Technology, 2010, 101(19): 7592-7597. | 69 | TIEN M. Properties of ligninase from Phanerochaete chrysosporium and their possible applications[J]. Critical Reviews in Microbiology, 2009, 15: 141-168. | 70 | PALMA C, LLORET L, LVEDA L SEP, et al. Production of versatile peroxidase from Pleurotus eryngii by solid-state fermentation using agricultural residues and evaluation of its catalytic properties[J]. Preparative Biochemistry, 2016, 46(2): 200-207. | 71 | POZDNYAKOVA N, MAKAROV O, CHERNYSHOVA M, et al. Versatile peroxidase of Bjerkandera fumosa: substrate and inhibitor specificity[J]. Enzyme and Microbial Technology, 2013, 52(1): 44-53. | 72 | LIU J, ZHANG S, SHI Q, et al. Highly efficient oxidation of synthetic and natural lignin-related compounds by Physisporinus vitreus versatile peroxidase[J]. International Biodeterioration & Biodegradation, 2019, 136: 41-48. | 73 | BUSSE. Reaction kinetics of versatile peroxidase for the degradation of lignin compounds[J]. American Journal of Biochemistry & Biotechnology, 2013, 9(4): 365-394. | 74 | PREZ-BOADA M, DOYLE W A, RUIZ-DUEAS F J, et al. Expression of Pleurotus eryngii versatile peroxidase in Escherichia coli and optimisation of in vitro folding[J]. Enzyme & Microbial Technology, 2002, 30(4): 518-524. | 75 | MAMASHLI F, BADRAGHI J, DELAVARI B, et al. Improvement of versatile peroxidase activity and stability by a cholinium-based ionic liquid[J]. Journal of Molecular Liquids, 2018, 272: 597-608. | 76 | FERN NDEZ-FUEYO E, CASTANERA R, RUIZ-DUE AS F J, et al. Ligninolytic peroxidase gene expression by Pleurotus ostreatus: differential regulation in lignocellulose medium and effect of temperature and pH[J]. Fungal Genetics & Biology, 2014, 72: 150-161. | 77 | CHEN M, YAO S J, ZHANG H, et al. Purification and characterization of a versatile peroxidase from edible mushroom Pleurotus eryngii[J]. Chinese Journal of Chemical Engineering, 2010, 18(5): 824-829. | 78 | KNOP D, LEVINSON D, MAKOVITZKI A, et al. Limits of versatility of versatile peroxidase[J]. Applied & Environmental Microbiology, 2016, 82(14): 00743-00716. | 79 | BAO X, LIU A Q, LU X F, et al. Direct over-expression, characterization and H2O2 stability study of active Pleurotus eryngii versatile peroxidase in Escherichia coli[J]. Biotechnology Letters, 2012, 34(8): 1537-1543. | 80 | DOMINIQUE K, LORENZO C, LAURENT F, et al. PeroxiBase: a database with new tools for peroxidase family classification[J]. Nucleic Acids Research, 2009, 37(1): 261-266. | 81 | MORITA, MIFUMI, NARIOKA, et al. Characterization of a novel DyP-type peroxidase from Streptomyces avermitilis[J]. Journal of Bioscience and Bioengineering, 2017, 123(4): 425-430. | 82 | LON?AR N, COLPA D I, FRAAIJE M W. Exploring the biocatalytic potential of a DyP-type peroxidase by profiling the substrate acceptance of Thermobifida fusca DyP peroxidase[J]. Tetrahedron, 2016, 72(46): 7276-7281. | 83 | RAHMANPOUR R, BUGG T D H. Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5: oxidation of Mn(Ⅱ) and polymeric lignin by Dyp1B[J]. Archives of Biochemistry & Biophysics, 2015, 574: 93-98. | 84 | MENDES S, CATARINO T, SILVEIRA C, et al. Catalytic mechanism of BsDyP an A-type dye-decolourising peroxidase: neither aspartate nor arginine is individually essential for peroxidase activity[J]. Catalysis Science & Technology, 2015, 5: 5196-5207. | 85 | GONZALO G D, COLPA D I, HABIB M H M, et al. Bacterial enzymes involved in lignin degradation[J]. Journal of Biotechnology, 2016, 236: 110-119. | 86 | MIN K, GONG G, WOO H M, et al. A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer[J]. Scientific Reports, 2015, 5: 8245. | 87 | SANTOS A, SONIA M, VANIA B, et al. New dye-decolorizing peroxidases from Bacillus subtilis and Pseudomonas putida MET94: towards biotechnological applications[J]. Applied Microbiology & Biotechnology, 2013, 98(5): 2053-2065. | 88 | BLOOIS E V, PAZMINO D E T, WINTER R T, et al. A robust and extracellular heme-containing peroxidase from Thermobifida fuscaas prototype of a bacterial peroxidase superfamily[J]. Applied Microbiology & Biotechnology, 2010, 86(5): 1419-1430. | 89 | OGOLA H J O, KAMⅡKE T, HASHIMOTO N, et al. Molecular characterization of a novel peroxidase from the Cyanobacterium Anabaena sp. strain PCC 7120[J]. Applied & Environmental Microbiology, 2009, 75(23): 7509-7518. | 90 | SHAKERI M, SHODA M. Decolorization of an anthraquinone dye by the recombinant dye-decolorizing peroxidase (rDyP) immobilized on mesoporous materials[J]. Journal of Molecular Catalysis B: Enzymatic, 2008, 54(1-2): 42-49. | 91 | SUGANO Y, MATSUSHIMA Y, TSUCHIYA K, et al. Degradation pathway of an anthraquinone dye catalyzed by a unique peroxidase DyP from Thanatephorus cucumeris Dec 1[J]. Biodegradation, 2009, 20(3): 433-440. | 92 | LI J, LIU C, LI B Z, et al. Identification and molecular characterization of a novel DyP-Type peroxidase from Pseudomonas aeruginosa PKE117[J]. Applied Biochemistry & Biotechnology, 2012, 166(3): 774-785. | 93 | 胡礼珍, 王佳, 袁波, 等. 碳一气体生物利用进展[J]. 生物加工过程, 2017, 15(6): 17-25. | 93 | HU L Z, WANG J, YUAN B, et al. Production of biofuels and chemicals from C1 gases by microorganisms: states and prospects[J]. Chinese Journal of Bioprocess Engineering, 2017, 15(6): 17-25. |
|