Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (S1): 69-76.DOI: 10.16085/j.issn.1000-6613.2020-0213
• Chemical processes and equipment • Previous Articles Next Articles
Yongtao NI(), Qinxin ZHAO(
), Yong GUI, Yungang WANG, Huaishuang SHAO
Received:
2020-02-16
Online:
2020-06-29
Published:
2020-05-20
Contact:
Qinxin ZHAO
通讯作者:
赵钦新
作者简介:
倪永涛(1994—),男,硕士研究生,研究方向为天然气高效低氮燃烧。E-mail:基金资助:
CLC Number:
Yongtao NI, Qinxin ZHAO, Yong GUI, Yungang WANG, Huaishuang SHAO. Structural design and numerical analysis of two-stagelow-pressure ejector[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 69-76.
倪永涛, 赵钦新, 桂雍, 王云刚, 邵怀爽. 两级低压引射器的结构设计与数值分析[J]. 化工进展, 2020, 39(S1): 69-76.
参数 | 数值 |
---|---|
热负荷/kW | 5.0 |
燃气密度/kg·m-3 | 0.717 |
空气密度/kg·m-3 | 1.293 |
燃气压力/Pa | 1200 |
燃气、空气温度/K | 300 |
理论空气量/m3 | 9.64 |
参数 | 数值 |
---|---|
热负荷/kW | 5.0 |
燃气密度/kg·m-3 | 0.717 |
空气密度/kg·m-3 | 1.293 |
燃气压力/Pa | 1200 |
燃气、空气温度/K | 300 |
理论空气量/m3 | 9.64 |
参数 | 数值 |
---|---|
燃气喷嘴半径r/mm | 0.9 |
第一级收缩段半径R1/mm | 8.8 |
第一级混合段半径r1/mm | 4 |
第一级扩压段半径R2/mm | 5.6 |
第二级收缩段半径R3/mm | 24.75 |
第二级混合段半径r2/mm | 11.25 |
第二级扩压段半径R4/mm | 22.5 |
第一级收缩段出口至喷嘴距离L1/mm | 10.4 |
第一级混合段出口至喷嘴距离L2/mm | 30.4 |
第一级扩压段出口至喷嘴距离L3/mm | 62.2 |
第二级收缩段出口至喷嘴距离L4/mm | 91.5 |
第二级混合段出口至喷嘴距离L5/mm | 147.8 |
第二级扩压段出口至喷嘴距离L6/mm | 237.8 |
参数 | 数值 |
---|---|
燃气喷嘴半径r/mm | 0.9 |
第一级收缩段半径R1/mm | 8.8 |
第一级混合段半径r1/mm | 4 |
第一级扩压段半径R2/mm | 5.6 |
第二级收缩段半径R3/mm | 24.75 |
第二级混合段半径r2/mm | 11.25 |
第二级扩压段半径R4/mm | 22.5 |
第一级收缩段出口至喷嘴距离L1/mm | 10.4 |
第一级混合段出口至喷嘴距离L2/mm | 30.4 |
第一级扩压段出口至喷嘴距离L3/mm | 62.2 |
第二级收缩段出口至喷嘴距离L4/mm | 91.5 |
第二级混合段出口至喷嘴距离L5/mm | 147.8 |
第二级扩压段出口至喷嘴距离L6/mm | 237.8 |
参数 | 数值 |
---|---|
燃气喷嘴半径r/mm | 0.9 |
第一级收缩段半径R1/mm | 8.8 |
第一级混合段半径r1/mm | 4 |
第一级扩压段半径R2/mm | 5.6 |
第二级收缩段半径R3/mm | 24.75 |
第二级混合段半径r2/mm | 11.25 |
第二级扩压段半径R4/mm | 22.5 |
第一级收缩段出口至喷嘴距离L1/mm | 10.4 |
第一级混合段出口至喷嘴距离L2/mm | 30.4 |
第二级收缩段出口至喷嘴距离L4/mm | 59.7 |
第二级混合段出口至喷嘴距离L5/mm | 116.0 |
第二级扩压段出口至喷嘴距离L6/mm | 206.0 |
参数 | 数值 |
---|---|
燃气喷嘴半径r/mm | 0.9 |
第一级收缩段半径R1/mm | 8.8 |
第一级混合段半径r1/mm | 4 |
第一级扩压段半径R2/mm | 5.6 |
第二级收缩段半径R3/mm | 24.75 |
第二级混合段半径r2/mm | 11.25 |
第二级扩压段半径R4/mm | 22.5 |
第一级收缩段出口至喷嘴距离L1/mm | 10.4 |
第一级混合段出口至喷嘴距离L2/mm | 30.4 |
第二级收缩段出口至喷嘴距离L4/mm | 59.7 |
第二级混合段出口至喷嘴距离L5/mm | 116.0 |
第二级扩压段出口至喷嘴距离L6/mm | 206.0 |
参数 | 燃气质量流量/kg·s-1 | 空气质量流量/kg·s-1 | 质量流量引射系数 | 相对误差/% |
---|---|---|---|---|
理论计算值 | 1.02×10-4 | 21.65×10-4 | 21.23 | 2.40 |
数值计算值 | 1.00×10-4 | 21.74×10-4 | 21.74 |
参数 | 燃气质量流量/kg·s-1 | 空气质量流量/kg·s-1 | 质量流量引射系数 | 相对误差/% |
---|---|---|---|---|
理论计算值 | 1.02×10-4 | 21.65×10-4 | 21.23 | 2.40 |
数值计算值 | 1.00×10-4 | 21.74×10-4 | 21.74 |
引射器类型 | 燃气质量流量/kg·s-1 | 空气质量流量/kg·s-1 | 质量流量引射系数 | 甲烷质量分数标准差 | 甲烷质量分数平均值 | 甲烷质量分数标准差系数 |
---|---|---|---|---|---|---|
传统两级引射器 | 1.003×10-4 | 21.74×10-4 | 21.68 | 0.164×10-2 | 4.489×10-2 | 3.653×10-2 |
新型两级引射器 | 1.001×10-4 | 24.00×10-4 | 23.97 | 0.187×10-2 | 4.079×10-2 | 4.583×10-2 |
引射器类型 | 燃气质量流量/kg·s-1 | 空气质量流量/kg·s-1 | 质量流量引射系数 | 甲烷质量分数标准差 | 甲烷质量分数平均值 | 甲烷质量分数标准差系数 |
---|---|---|---|---|---|---|
传统两级引射器 | 1.003×10-4 | 21.74×10-4 | 21.68 | 0.164×10-2 | 4.489×10-2 | 3.653×10-2 |
新型两级引射器 | 1.001×10-4 | 24.00×10-4 | 23.97 | 0.187×10-2 | 4.079×10-2 | 4.583×10-2 |
1 | 同济大学, 等. 燃气燃烧与应用[M]. 北京: 中国建筑工业出版社, 2011. |
Tongji University, et al. Gas combustion and application[M]. Beijing: China Architecture & Building Press, 2011. | |
2 | HUANG Bin-Juine, CHANG J M. Empirical correlation for ejector design[J]. International Journal of Refrigeration, 1999, 22(5): 379-388. |
3 | APHORNRATANA S, EAMES I W. A small capacity steam-ejector refrigerator: experimental investigation of a system using ejector with movable primary nozzle[J]. International Journal of Refrigeration, 1997, 20(5): 352-358. |
4 | 张鲲鹏, 薛飞, 潘卫明, 等. 高压气体引射器的试验研究和仿真[J]. 热科学与技术, 2004(2): 42-47. |
ZHANG Kunpeng, XUE Fei, PAN Weiming, et al. Experimental investigation and numerical simulation of high-pressure gas ejector[J]. Journal of Thermal Science and Technology, 2004(2): 42-47. | |
5 | 赵静野, 孙厚钧, 高军. 引射器基本工作原理及其应用[J]. 北京建筑工程学院学报, 2001, 17(3): 12-15. |
ZHAO Jingye, SUN Houjun, GAO Jun. Basic principles and applications of ejector[J]. Journal of Beijing Institute of Civil Engineering and Architecture, 2001, 17(3): 12-15. | |
6 | 唐敬麟, 张禄虎. 空气引射器的设计[J]. 化工起重运输设计, 1993(3): 24-28. |
TANG Jinglin, ZHANG Luhu. Design of air ejector[J]. Design of Chemical Lifting Transportation, 1993(3): 24-28. | |
7 | 冯良, 刘鲲, 韩国园, 等. 大气式燃气燃烧器引射器的CFD研究[J]. 上海煤气, 2003(2): 13-16. |
FENG Liang, LIU Kun, HAN Guoyuan, et al. CFD research on injector of atmospheric gas burner[J]. Shanghai Gas, 2003(2): 13-16. | |
8 | 刘文斌. 中压引射大气式燃烧器设计的探讨[J]. 土木工程与管理学报, 2000, 17(3): 41-43. |
LIU Wenbin. Research on the design of middle pressure induced burner[J]. Journal of Wuhan Urban Construction Institute, 2000, 17(3): 41-43. | |
9 | 彭世尼. 关于低压引射大气式燃烧器最佳结构参数的计算方法[J]. 城市燃气, 1996(1): 9-11, 32. |
PENG Shini. Calculation method of optimal structural parameters of low pressure ejection atmospheric burner[J]. City Gas, 1996(1): 9-11, 32. | |
10 | 单喆简. 关于引射器效率的探讨[J]. 能源工程, 1988(S1): 18-21. |
SHAN Zhejian. Discussion on the ejector efficiency[J]. Energy Engineering, 1988(S1): 18-21. | |
11 | 王时珍. 两级吸入式高效高引射系数引射器[J]. 力学学报, 1980(4): 90-95. |
WANG Shizhen. Two stage suction type efficient ejector with large mass ratio[J]. Acta Mechanica Sinica, 1980(4): 90-95. | |
12 | 尚阳, 王跃社. 单喷嘴低压引射器的结构设计与数值分析[J]. 化工进展, 2017, 36(S1): 114. |
SHANG Yang, WANG Yueshe. Structural design and numerical analysis of single nozzle low pressure ejector[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 114. | |
13 | 李成明, 徐江荣. 燃气文丘力空气引射器的数值模拟研究[J]. 杭州电子科技大学学报(自然科学版), 2016, 36(160): 93-96, 100. |
LI Chengming, XU Jiangrong. Parameter optimization of domestic gas burner injector[J]. Journal of Hangzhou Dianzi University, 2016, 36(160): 93-96, 100. | |
14 | 方媛媛, 郭全, 傅忠诚, 等. 低压大气式燃烧器中引射器的数值模拟[J]. 北京建筑工程学院学报, 2006, 22(4): 55-58. |
FANG Yuanyuan, GUO Quan, FU Zhongcheng, et al. Numerical simulation of the injector in the low pressure atmospheric gas burner[J]. Journal of Beijing Institute of Civil Engineering and Architecture, 2006, 22(4): 55-58. | |
15 | 方媛媛, 郭全. 喷嘴位置对引射器性能影响的数值模拟[J]. 煤气与热力, 2007(7): 49-51. |
FANG Yuanyuan, GUO Quan. Numerical simulation of influence of nozzle position on injector performance[J]. Gas & Heat, 2007(7): 49-51. | |
16 | 王春凤, 王锁芳. 混合管结构对多喷管引射器性能的影响[J]. 重庆理工大学学报, 2012(10): 19-24. |
WANG Chunfeng, WANG Suofang. Investigation on the influence of the mixing tube structure on performance of multi-nozzle ejector[J]. Journal of Chongqing Institute of Technology, 2012(10): 19-24. | |
17 | 李徐佳, 王华山, 李楠. 一维流场均匀性评价指标的修正系数及其应用[J]. 辽宁工程技术大学学报, 2016(10): 1168-1173. |
LI Xujia, WANG Huashan, LI Nan. Correction coefficient of uniformity evaluation indexes and its application in one-dimensional flow field[J]. Journal of Liaoning Technical University, 2016(10): 1168-1173. | |
18 | 陶红歌, 陈焕新, 谢军龙, 等. 基于面积加权平均速度和质量加权平均速度的流体流动均匀性指标探讨[J]. 化工学报, 2010(S2): 116-120. |
TAO Hongge, CHEN Huanxin, XIE Junlong, et al. Flow uniformity index based on area-weighted and mass-weighted average velocity[J]. CIESC Journal, 2010(S2): 116-120. | |
19 | 李坦, 靳世平, 黄素逸, 等. 流场速度分布均匀性评价指标比较与应用研究[J]. 热力发电, 2013, 42(11): 60-63. |
LI Tan, JIN Shipng, HUANG Suyi, et al. Evaluation indices of flow velocity distribution uniformity: comparison and application[J]. Thermal Power Generation, 2013, 42(11): 60-63. |
[1] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[2] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[3] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[4] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[5] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. |
[8] | LI Chunli, HAN Xiaoguang, LIU Jiapeng, WANG Yatao, WANG Chenxi, WANG Honghai, PENG Sheng. Research progress of liquid distributors in packed columns [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4479-4495. |
[9] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[10] | LIN Hai, WANG Yufei. Distributed wind farm layout optimization considering noise constraint [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3394-3403. |
[11] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[12] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[13] | HOU Dianbao, HE Maoyong, CHEN Yugang, YANG Haiyun, LI Haimin. Application analysis of resource allocation optimization and circular economy in development and utilization of potassium resources [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3197-3208. |
[14] | WANG Dong, YU Pinhua, CHEN Bin, XIAO Ang, CHEN Feng, JIANG Yangyang. Energy saving optimization of cyclohexane three-effect distillation in cyclohexanone production [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2245-2251. |
[15] | LING Shan, LIU Juming, ZHANG Qiancheng, LI Yan. Research progress on simulated moving bed separation process and its optimization methods [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2233-2244. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 274
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 316
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |