Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (2): 738-746.DOI: 10.16085/j.issn.1000-6613.2019-0726
• Resources and environmental engineering • Previous Articles Next Articles
Zhe WANG1(),Yifei LUO1,Chunli ZHENG1(),Xuefeng ZHANG2,Weida WANG1,Qinghong JIANG1
Received:
2019-05-06
Online:
2020-03-12
Published:
2020-02-05
Contact:
Chunli ZHENG
王哲1(),骆逸飞1,郑春丽1(),张雪峰2,王维大1,姜庆宏1
通讯作者:
郑春丽
作者简介:
王哲(1979—),女,博士,副教授,研究方向为矿区污染土壤修复。E-mail:基金资助:
CLC Number:
Zhe WANG,Yifei LUO,Chunli ZHENG,Xuefeng ZHANG,Weida WANG,Qinghong JIANG. Effect of biochar on migration of heavy metals in mining soil under leaching conditions[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 738-746.
王哲,骆逸飞,郑春丽,张雪峰,王维大,姜庆宏. 淋溶条件下生物炭对矿区土壤中重金属迁移的影响[J]. 化工进展, 2020, 39(2): 738-746.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0726
形态 | Cu元素各形态的质量分数/% | Zn元素各形态的质量分数/% | Pb元素各形态的质量分数/% | Mn元素各形态的质量分数/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rc=0 | rc=1 | rc=3 | rc=5 | rc=0 | rc=1 | rc=3 | rc=5 | rc=0 | rc=1 | rc=3 | rc=5 | rc=0 | rc=1 | rc=3 | rc=5 | |
酸可提取态 | 17.43 | 14.23 | 8.77 | 5.78 | 24.43 | 21.23 | 18.02 | 15.10 | 28.57 | 25.78 | 21.99 | 16.81 | 9.52 | 7.23 | 5.02 | 2.81 |
可还原态 | 13.08 | 13.95 | 14.83 | 16.71 | 27.00 | 20.13 | 25.45 | 31.68 | 37.14 | 28.78 | 24.32 | 18.08 | 54.20 | 52.13 | 48.45 | 45.68 |
可氧化态 | 49.32 | 47.91 | 45.62 | 43.69 | 10.61 | 17.17 | 10.38 | 6.14 | 26.43 | 27.54 | 28.16 | 28.74 | 1.27 | 2.52 | 3.80 | 7.67 |
残渣态 | 20.17 | 23.91 | 30.78 | 33.82 | 37.96 | 41.47 | 46.15 | 47.08 | 7.86 | 17.90 | 25.53 | 36.37 | 35.01 | 38.12 | 42.73 | 43.84 |
形态 | Cu元素各形态的质量分数/% | Zn元素各形态的质量分数/% | Pb元素各形态的质量分数/% | Mn元素各形态的质量分数/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rc=0 | rc=1 | rc=3 | rc=5 | rc=0 | rc=1 | rc=3 | rc=5 | rc=0 | rc=1 | rc=3 | rc=5 | rc=0 | rc=1 | rc=3 | rc=5 | |
酸可提取态 | 17.43 | 14.23 | 8.77 | 5.78 | 24.43 | 21.23 | 18.02 | 15.10 | 28.57 | 25.78 | 21.99 | 16.81 | 9.52 | 7.23 | 5.02 | 2.81 |
可还原态 | 13.08 | 13.95 | 14.83 | 16.71 | 27.00 | 20.13 | 25.45 | 31.68 | 37.14 | 28.78 | 24.32 | 18.08 | 54.20 | 52.13 | 48.45 | 45.68 |
可氧化态 | 49.32 | 47.91 | 45.62 | 43.69 | 10.61 | 17.17 | 10.38 | 6.14 | 26.43 | 27.54 | 28.16 | 28.74 | 1.27 | 2.52 | 3.80 | 7.67 |
残渣态 | 20.17 | 23.91 | 30.78 | 33.82 | 37.96 | 41.47 | 46.15 | 47.08 | 7.86 | 17.90 | 25.53 | 36.37 | 35.01 | 38.12 | 42.73 | 43.84 |
土壤层/cm | Pb/% | Cu/% | Zn/% | Mn/% | ||||
---|---|---|---|---|---|---|---|---|
CK | 5%生物炭 | CK | 5%生物炭 | CK | 5%生物炭 | CK | 5%生物炭 | |
0~5 | 42.40 | 48.49 | 46.66 | 48.79 | 44.46 | 46.38 | 48.81 | 49.65 |
5~10 | 42.14 | 46.23 | 45.97 | 47.59 | 42.78 | 47.13 | 46.97 | 47.43 |
10~15 | 8.89 | 3.37 | 5.31 | 2.64 | 7.53 | 4.38 | 2.37 | 1.89 |
15~20 | 6.55 | 1.89 | 2.05 | 0.97 | 5.21 | 2.08 | 1.83 | 1.01 |
土壤层/cm | Pb/% | Cu/% | Zn/% | Mn/% | ||||
---|---|---|---|---|---|---|---|---|
CK | 5%生物炭 | CK | 5%生物炭 | CK | 5%生物炭 | CK | 5%生物炭 | |
0~5 | 42.40 | 48.49 | 46.66 | 48.79 | 44.46 | 46.38 | 48.81 | 49.65 |
5~10 | 42.14 | 46.23 | 45.97 | 47.59 | 42.78 | 47.13 | 46.97 | 47.43 |
10~15 | 8.89 | 3.37 | 5.31 | 2.64 | 7.53 | 4.38 | 2.37 | 1.89 |
15~20 | 6.55 | 1.89 | 2.05 | 0.97 | 5.21 | 2.08 | 1.83 | 1.01 |
重金属 | 土壤 | 一级动力学方程 | Elovich方程 | 双常数速率方程 | 抛物线扩散方程 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | R2 | a | b | R2 | a | b | R2 | a | b | R2 | ||
Pb | CK | 1.9949 | 0.0007 | 0.5770 | -13.0950 | 4.5055 | 0.9584 | -0.1395 | 0.4384 | 0.8875 | 3.8416 | 0.4209 | 0.8727 |
5%生物炭 | 0.8687 | 0.0003 | 0.4106 | -0.0322 | 0.5144 | 0.9619 | -0.1521 | 0.2047 | 0.7719 | 2.0064 | 0.0439 | 0.6164 | |
Cu | CK | 0.9154 | 0.0008 | 0.6603 | -6.8851 | 2.0499 | 0.9825 | -1.5290 | 0.5063 | 0.9552 | 0.7180 | 0.1956 | 0.9332 |
5%生物炭 | -0.2972 | 0.0005 | 0.5099 | -0.5501 | 0.2840 | 0.9510 | -1.8620 | 0.3201 | 0.8098 | 0.5259 | 0.0262 | 0.8440 | |
Zn | CK | 1.2705 | 0.0007 | 0.7125 | -6.6953 | 2.2190 | 0.9775 | -0.6922 | 0.4095 | 0.9714 | 1.5260 | 0.2121 | 0.9221 |
5%生物炭 | 0.0914 | 0.0004 | 0.3948 | -0.3527 | 0.3153 | 0.9545 | -1.2589 | 0.2705 | 0.7493 | 0.8895 | 0.0272 | 0.6626 | |
Mn | CK | 1.4150 | 0.0008 | 0.6734 | -10.3660 | 3.1600 | 0.9899 | -0.9105 | 0.4827 | 0.9544 | 1.3091 | 0.3033 | 0.9516 |
5%生物炭 | 0.5674 | 0.0003 | 0.6457 | -0.3448 | 0.4511 | 0.9835 | -0.4807 | 0.2170 | 0.9344 | 1.3592 | 0.0418 | 0.8814 |
重金属 | 土壤 | 一级动力学方程 | Elovich方程 | 双常数速率方程 | 抛物线扩散方程 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | R2 | a | b | R2 | a | b | R2 | a | b | R2 | ||
Pb | CK | 1.9949 | 0.0007 | 0.5770 | -13.0950 | 4.5055 | 0.9584 | -0.1395 | 0.4384 | 0.8875 | 3.8416 | 0.4209 | 0.8727 |
5%生物炭 | 0.8687 | 0.0003 | 0.4106 | -0.0322 | 0.5144 | 0.9619 | -0.1521 | 0.2047 | 0.7719 | 2.0064 | 0.0439 | 0.6164 | |
Cu | CK | 0.9154 | 0.0008 | 0.6603 | -6.8851 | 2.0499 | 0.9825 | -1.5290 | 0.5063 | 0.9552 | 0.7180 | 0.1956 | 0.9332 |
5%生物炭 | -0.2972 | 0.0005 | 0.5099 | -0.5501 | 0.2840 | 0.9510 | -1.8620 | 0.3201 | 0.8098 | 0.5259 | 0.0262 | 0.8440 | |
Zn | CK | 1.2705 | 0.0007 | 0.7125 | -6.6953 | 2.2190 | 0.9775 | -0.6922 | 0.4095 | 0.9714 | 1.5260 | 0.2121 | 0.9221 |
5%生物炭 | 0.0914 | 0.0004 | 0.3948 | -0.3527 | 0.3153 | 0.9545 | -1.2589 | 0.2705 | 0.7493 | 0.8895 | 0.0272 | 0.6626 | |
Mn | CK | 1.4150 | 0.0008 | 0.6734 | -10.3660 | 3.1600 | 0.9899 | -0.9105 | 0.4827 | 0.9544 | 1.3091 | 0.3033 | 0.9516 |
5%生物炭 | 0.5674 | 0.0003 | 0.6457 | -0.3448 | 0.4511 | 0.9835 | -0.4807 | 0.2170 | 0.9344 | 1.3592 | 0.0418 | 0.8814 |
1 | DU Y, CHEN L, DING P, et al. Different exposure profile of heavy metal and health risk between residents near a Pb-Zn mine and a Mn mine in Huayuan county, South China[J]. Chemosphere, 2019, 216: 352-264. |
2 | CAI L M, XU Z C, QI J Y, et al. Assessment of exposure to heavy metals and health risks among residents near Tonglushan mine in Hubei, China[J]. Chemosphere, 2015, 127: 127-135. |
3 | KEXIN L I, LIANG T, WANG L, et al. Contamination and health risk assessment of heavy metals in road dust in Bayan Obo Mining Region in Inner Mongolia, North China[J]. Journal of Geographical Sciences, 2015, 25(12): 1439-1451. |
4 | XU C, TAYLOR R N, LI W, et al. Comparison of fluorite geochemistry from REE deposits in the Panxi region and Bayan Obo, China[J]. Journal of Asian Earth Sciences, 2012, 57(6): 76-89. |
5 | SONG B, ZENG G, GONG J, et al. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals[J]. Environment International, 2017, 105: 43-55. |
6 | KARACA O, CAMESELLE C, REDDY K R. Mine tailing disposal sites: contamination problems, remedial options and phytocaps for sustainable remediation[J]. Reviews in Environmental Science and Bio/Technology, 2017, 17: 205-228. |
7 | YIN D, WANG X, CHEN C, et al. Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil[J]. Chemosphere, 2016, 152: 196-206. |
8 | FANG S, TSANG D, ZHOU F, et al. Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar[J]. Chemosphere, 2016, 149: 263-271. |
9 | BEIYUAN J, AWAD Y, BECKERS F, et al. Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions[J]. Chemosphere, 2017, 178: 110-118. |
10 | PAZ-FERREIRO J, LU H, FU S, et al. Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review[J]. Solid Earth Discussions, 2013, 5(2): 2155-2179. |
11 | NOVAK J M, BUSSCHER W J, LAIRD D L, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil[J]. Soil Science, 2009, 174(2): 105-112. |
12 | BEESLEY L, MARMIROLI M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar[J]. Environmental Pollution, 2011, 159(2): 474-480. |
13 | KELLY C N, PELTZ C D, STANTON M, et al. Biochar application to hardrock mine tailings: soil quality, microbial activity, and toxic element sorption[J]. Applied Geochemistry, 2014, 43: 35-48. |
14 | 吴萍萍, 王家嘉, 李录久, 等. 模拟酸雨条件下生物炭对污染林地土壤重金属淋失和有效性的影响[J]. 水土保持学报, 2016, 30(3): 115-119. |
WU P P, WANG J J, LI L J, et al. Effects of biochar on heavy metal leaching and availability in contaminated forest soil under simulated acid rain condition[J]. Journal of Soil and Water Conservation, 2016, 30(3): 115-119. | |
15 | 荆延德, 巩晨, 孙小银, 等. 棉花、花生秸秆生物炭对棕壤中Cu(Ⅱ)运移的影响[J]. 水土保持通报, 2016, 36(3): 50-55. |
JIN Y D, GONG C, SUN X Y, et al. Effects of cotton and peanut straw biochar on Cu(Ⅱ) migration in brown soil[J]. Bulletin of Soil and Water Conservation, 2016, 36(3): 50-55. | |
16 | 梁媛. 重金属污染土壤与地下水一体化修复新技术研究[D]. 上海: 上海交通大学, 2015. |
LIANG Y. A new technology for simultaneous remediation of heavy metals contaminated soil and groundwater[D]. Shanghai: Shanghai Jiao Tong University, 2015. | |
17 | KARAMI N, CLEMENTE R, MORENO-JIMENEZ E, et al. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass[J]. Journal of Hazardous Materials, 2011, 191(1/2/3): 41-48. |
18 | 张丽华, 朱志良, 郑承松, 等. 模拟酸雨对三明地区受重金属污染土壤的淋滤过程研究[J]. 农业环境科学学报, 2008, 27(1):151-155. |
ZHANG L H, ZHU Z L, ZHENG C S, et al. Leaching of heavy metals from Sanming polluted soil with simulated acid rain[J]. Journal of Agro-Environment Science, 2008, 27(1):151-155. | |
19 | LUNDBERG B, SUNDQVIST B. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils[J]. Environmental Pollution, 2011, 159(12): 3269-3282. |
20 | 房增强. 铅锌矿区土壤重金属污染特征及稳定化研究[D]. 北京: 中国矿业大学, 2016. |
FANG Z Q. Pollution characteristics of heavy metal in soil from lead and zinc mine and its stabilization study[D]. Beijing: China University of Mining & Technology, 2016. | |
21 | UCHIMIYA M, KLASSON K T, WARTELLE L H, et al. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations[J]. Chemosphere, 2011, 82(10): 1431-1437. |
22 | PUGA A P, MELO L C A, DE ABREU C A, et al. Leaching and fractionation of heavy metals in mining soils amended with biochar[J]. Soil and Tillage Research, 2016, 164: 25-33. |
23 | SAHA U K, TANIGUCHI S, SAKURAI K. Adsorption behavior of cadmium, zinc, and lead on hydroxyaluminum- and hydroxyaluminosilicate- montmorillonite complexes[J]. Soil Science Society of America Journal, 2001, 65(3): 694-703. |
24 | 林青, 徐绍辉. 土壤中重金属离子竞争吸附的研究进展[J]. 土壤, 2008, 40(5): 706-711. |
LIN Q, XU S H. A review on competitive adsorption of heavy metals in soils[J]. Soils, 2008, 40(5): 706-711. | |
25 | 郑顺安, 郑向群, 张铁亮, 等. 污染紫色土重金属的淋溶特征及释放动力学研究[J]. 水土保持学报, 2011, 25(4): 253-256. |
ZHENG S A, ZHENG X Q, ZHANG T L, et al. Study on leaching characteristics and release kinetics of heavy metals in polluted purple soil[J]. Journal of Soil and Water Conservation, 2011, 25(4): 253-256. | |
26 | 许中坚, 刘广深. 酸雨作用下红壤铅的释放特征与规律研究[J]. 农业环境科学学报, 2005, 24(6): 1109-1113. |
XU Z J, LIU G S. Characteristics and law of lead release from red soils under the influence of simulated acid rain[J]. Journal of Agro-Environment Science, 2005, 24(6): 1109-1113. | |
27 | FONSECA B, MAIO H, QUINTELAS C, et al. Retention of Cr(Ⅵ) and Pb(Ⅱ) on a loamy sand soil: kinetics, equilibria and breakthrough[J]. Chemical Engineering Journal, 2009, 152(1): 212-219. |
28 | 王代长, 蒋新, 卞永荣, 等. 模拟酸雨条件下Cd2+在土壤及其矿物表面的解吸动力学特征[J]. 环境科学, 2004, 25(4): 117-122. |
WANG D C, JIANG X, BIAN Y R, et al. Kinetic characteristics of Cd2+ desorption in minerals and soils under simulated acid rain[J]. Chinese Journal of Environmental Science, 2004, 25(4): 117-122. | |
29 | 李媛媛. 尾矿重金属淋溶污染及其抑制技术研究——以广东大宝山尾矿为例[D]. 广州:华南理工大学, 2010. |
LI Y Y. The study of heavy metal pollution produced by leaching tailings and suppression control-a case study of Da Baoshan tailings[D]. Guangzhou: South China University of Technology, 2010. | |
30 | BASHIR S, ZHU J, FU Q, et al. Cadmium mobility, uptake and anti-oxidative response of water spinach ( ipomoea aquatic ) under rice straw biochar, zeolite and rock phosphate as amendments[J]. Chemosphere, 2018, 194: 579-587. |
31 | 李烨炜. 生物炭对Cd单一和Cd-Pb复合污染淡灰钙土性质及镉稳定化影响研究[D]. 兰州: 兰州交通大学, 2016. |
LI Y W. Stabilization of cadmium in Cd and Cd-Pb contaminated loesses by addition of biochars[D]. Lanzhou: Lanzhou Jiaotong University, 2016. | |
32 | HOUBEN D, EVRARD L, SONNET P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar[J]. Chemosphere, 2013, 92(11): 1450-1457. |
33 | JALALI M, KHANLARI Z V. Effect of aging process on the fractionation of heavy metals in some calcareous soils of Iran[J]. Geoderma, 2008, 143: 26-40. |
34 | CHEUNG C W, PORTER J F, MCKAY G. Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char[J]. Journal of Chemical Technology & Biotechnology, 2000, 75(11): 963-970. |
35 | ZHANG R H, LI Z G, LIU X D, et al. Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar[J]. Ecological Engineering, 2017, 98: 183-188. |
36 | SHEN X, HUANG D Y, REN X F, et al. Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil[J]. Journal of Environmental Management, 2016, 168: 245-251. |
37 | UCHIMIYA M, LIMA I M, KLASSON K T, et al. Immobilization of heavy metal ions(Cu-Ⅱ, Cd-Ⅱ, Ni-Ⅱ, and Pb-Ⅱ) by broiler litter-derived biochars in water and soil[J]. Journal of Agricultural and Food Chemistry, 2010, 58(9): 5538-5544. |
38 | TAN X F, LIU Y G, GU Y L, et al. Immobilization of Cd(Ⅱ) in acid soil amended with different biochars with a long term of incubation[J]. Environmental Science and Pollution Research, 2015, 22(16): 12597-12604. |
39 | REES F, SIMONNOT M O, MOREL J L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase[J]. European Journal of Soil Science, 2014, 65(1): 149-161. |
40 | BIAN R, JOSEPH S, CUI L, et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J]. Journal of Hazardous Materials, 2014, 272: 121-128. |
41 | LU H, LI Z, FU S, et al. Effect of biochar in cadmium fractions and soil biological activity in an anthrosol following acid rain deposition and aging[J]. Water Air Soil Pollution, 2015, 226: 164-173. |
42 | LEE H H, OWENS V N, PARK S, et al. Adsorption and precipitation of cadmium affected by chemical form and addition rate of phosphate in soils having different levels of cadmium[J]. Chemosphere, 2018, 206: 369-375. |
43 | JIANG T Y, JIANG J, XU R K, et al. Adsorption of Pb(Ⅱ) on variable charge soils amended with rice-straw derived biochar[J]. Chemosphere, 2012, 89(3): 249-256. |
[1] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[2] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[3] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[4] | WANG Peng, ZHANG Yang, FAN Bingqiang, HE Dengbo, SHEN Changshuai, ZHANG Hedong, ZHENG Shili, ZOU Xing. Process and kinetics of hydrochloric acid leaching of high-carbon ferrochromium [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 510-517. |
[5] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[6] | TAN Jihuai, YU Min, ZHANG Tongtong, HUANG Nengkun, WANG Ziwen, ZHU Xinbao. Manufacturing of tannin polypropoxy ether carboxylates as efficient and improved migration resistance plasticizers for PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4847-4855. |
[7] | LI Weihua, YU Qianwen, YIN Junquan, WU Yinkai, SUN Yingjie, WANG Yan, WANG Huawei, YANG Yufei, LONG Yuyang, HUANG Qifei, GE Yanchen, HE Yiyang, ZHAO Lingyan. Leaching behavior of heavy metals from broken ton bags filled with fly ash in acid rain environment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4917-4928. |
[8] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[9] | WANG Haoran, YIN Quanyu, FANG Ming, HOU Jianlin, LI Jun, HE Bin, ZHANG Mingyue. Optimization of near critical-water treatment process of tobacco stems [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5019-5027. |
[10] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[11] | OUYANG Sufang, ZHOU Daowei, HUANG Wei, JIA Feng. Research progress on novel anti-migration rubber antioxidants [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3708-3719. |
[12] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[13] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[14] | ZHANG Shan, ZHONG Zhaoping, YANG Yuxuan, DU Haoran, LI Qian. Enrichment of heavy metals in pyrolysis of municipal solid waste by phosphate modified kaolin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3893-3903. |
[15] | ZHENG Xin, JIA Li, WANG Yanlin, ZHANG Jingchao, CHEN Shihu, QIAO Xiaolei, FAN Baoguo. Effect of sewage sludge mixed with coal slime on heavy metal retention characteristics [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3233-3241. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |