Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (2): 728-737.DOI: 10.16085/j.issn.1000-6613.2019-0911
• Resources and environmental engineering • Previous Articles Next Articles
Shijian LU1,2(),Lijuan GAO1,2,Jiafeng WANG1,Dongya ZHAO1(
),Xin WANG1,Quanmin ZHU1
Received:
2019-06-10
Online:
2020-03-12
Published:
2020-02-05
Contact:
Dongya ZHAO
陆诗建1,2(),高丽娟1,2,王家凤1,赵东亚1(
),王鑫1,朱全民1
通讯作者:
赵东亚
作者简介:
陆诗建(1984—),男,博士研究生,高级工程师,研究方向为CCUS与废气治理技术。E-mail:基金资助:
CLC Number:
Shijian LU,Lijuan GAO,Jiafeng WANG,Dongya ZHAO,Xin WANG,Quanmin ZHU. Coupling optimization of energy-saving technology for cascade utilization of flue gas CO2 capture system[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 728-737.
陆诗建,高丽娟,王家凤,赵东亚,王鑫,朱全民. 烟气CO2捕集热能梯级利用节能工艺耦合优化[J]. 化工进展, 2020, 39(2): 728-737.
参数 | 组分 | 质量分数/% |
---|---|---|
组分参数 | CO2 | 20.33 |
H2O | 4.10 | |
O2 | 4.70 | |
N2 | 70.58 | |
物性参数 | 质量流量为23180.697kg/h,T=40℃,p=1.1bar |
参数 | 组分 | 质量分数/% |
---|---|---|
组分参数 | CO2 | 20.33 |
H2O | 4.10 | |
O2 | 4.70 | |
N2 | 70.58 | |
物性参数 | 质量流量为23180.697kg/h,T=40℃,p=1.1bar |
参数 | 组分 | 质量分数/% |
---|---|---|
组分参数 | CO2 | 3.61 |
H2O | 76.39 | |
MEA | 20.00 | |
物性参数 | 质量流量为110000kg/h,T=40℃,p=4.313bar(泵增压) |
参数 | 组分 | 质量分数/% |
---|---|---|
组分参数 | CO2 | 3.61 |
H2O | 76.39 | |
MEA | 20.00 | |
物性参数 | 质量流量为110000kg/h,T=40℃,p=4.313bar(泵增压) |
单元模块名称 | 参数 |
---|---|
吸收塔 | 类型:RadFrace 塔板数:20 烟气进塔位置:20 On-Stage 贫液出塔位置:1 Above-Stage 压力:1.093bar |
贫液泵 | 类型:Pump 出口压力:4.313bar |
贫富液换热器 | 类型:HeatX 流动方式:Countercurrent 端差:10℃ |
压缩式热泵蒸发器 | 类型:HeatX 流动方式:Countercurrent 冷流出口温度70℃ |
分离器1 | 类型:Flash2 温度:40℃ 压力:1.01325bar |
解吸塔顶气液换热器 | 类型:HeatX 流动方式:Countercurrent 冷流出口温度95℃ |
MVR系统冷却器 | 类型:Heater 温度:120℃ |
解吸塔 | 类型:RadFrace 塔板数:20 冷凝器类型:None 再沸器类型:Kettle 富液进料位置:1 Above-Stage 压力:1.14bar |
富液泵 | 类型:Pump 出口压力:4.513bar |
贫液冷却器 | 类型:Heater 温度:40℃ |
压缩式热泵冷凝器 | 类型:HeatX 流动方式:Countercurrent 冷流出口温度120℃ |
分离器2 | 类型:Flash2 温度:40℃ 压力:1.013245bar |
产品气CO2冷却器 | 类型:Heater 温度:120℃ |
单元模块名称 | 参数 |
---|---|
吸收塔 | 类型:RadFrace 塔板数:20 烟气进塔位置:20 On-Stage 贫液出塔位置:1 Above-Stage 压力:1.093bar |
贫液泵 | 类型:Pump 出口压力:4.313bar |
贫富液换热器 | 类型:HeatX 流动方式:Countercurrent 端差:10℃ |
压缩式热泵蒸发器 | 类型:HeatX 流动方式:Countercurrent 冷流出口温度70℃ |
分离器1 | 类型:Flash2 温度:40℃ 压力:1.01325bar |
解吸塔顶气液换热器 | 类型:HeatX 流动方式:Countercurrent 冷流出口温度95℃ |
MVR系统冷却器 | 类型:Heater 温度:120℃ |
解吸塔 | 类型:RadFrace 塔板数:20 冷凝器类型:None 再沸器类型:Kettle 富液进料位置:1 Above-Stage 压力:1.14bar |
富液泵 | 类型:Pump 出口压力:4.513bar |
贫液冷却器 | 类型:Heater 温度:40℃ |
压缩式热泵冷凝器 | 类型:HeatX 流动方式:Countercurrent 冷流出口温度120℃ |
分离器2 | 类型:Flash2 温度:40℃ 压力:1.013245bar |
产品气CO2冷却器 | 类型:Heater 温度:120℃ |
操作条件 | 设计值 |
---|---|
进入吸收塔烟气温度/℃ | 40 |
进入吸收塔贫液温度/℃ | 40 |
补充胺溶液温度/℃ | 20 |
吸收塔内贫液流量/m3·h-1 | 110 |
进入吸收塔烟气流量/m3·h-1 | 18863 |
吸收塔内塔底压力/kPa | 110 |
吸收塔内塔顶压力/kPa | 102 |
解吸塔再沸器压力/kPa | 120 |
解吸塔塔顶压力/kPa | 120 |
冷凝器内压力/kPa | 110 |
操作条件 | 设计值 |
---|---|
进入吸收塔烟气温度/℃ | 40 |
进入吸收塔贫液温度/℃ | 40 |
补充胺溶液温度/℃ | 20 |
吸收塔内贫液流量/m3·h-1 | 110 |
进入吸收塔烟气流量/m3·h-1 | 18863 |
吸收塔内塔底压力/kPa | 110 |
吸收塔内塔顶压力/kPa | 102 |
解吸塔再沸器压力/kPa | 120 |
解吸塔塔顶压力/kPa | 120 |
冷凝器内压力/kPa | 110 |
参数 | 设置范围 |
---|---|
冷富液分流比 | (0.01∶0.99)~(0.09∶0.91) |
解吸塔顶气体分流比 | (0.1∶0.9)~(0.3∶0.7) |
参数 | 设置范围 |
---|---|
冷富液分流比 | (0.01∶0.99)~(0.09∶0.91) |
解吸塔顶气体分流比 | (0.1∶0.9)~(0.3∶0.7) |
参数 | 设置范围 |
---|---|
冷量值/GJ·h-1 | -1.8~-3.5 |
级间冷却器所在塔板数 | 1~20 |
参数 | 设置范围 |
---|---|
冷量值/GJ·h-1 | -1.8~-3.5 |
级间冷却器所在塔板数 | 1~20 |
参数 | 设置范围 |
---|---|
冷富液分流比 | (0.01∶0.99)~(0.09∶0.91) |
解吸塔顶气体分流比 | (0.1∶0.9)~(0.3∶0.7) |
级间冷却器所在塔板数 | 1~20 |
冷量值/GJ·h-1 | -1.0~-3.5 |
参数 | 设置范围 |
---|---|
冷富液分流比 | (0.01∶0.99)~(0.09∶0.91) |
解吸塔顶气体分流比 | (0.1∶0.9)~(0.3∶0.7) |
级间冷却器所在塔板数 | 1~20 |
冷量值/GJ·h-1 | -1.0~-3.5 |
参数 | 设置范围 |
---|---|
贫富液换热器2面积分配/% | 20~85 |
分流进入贫富液换热器2的物流含量/% | 10~85 |
分流后富液S5进塔塔板数 | 1~20 |
参数 | 设置范围 |
---|---|
贫富液换热器2面积分配/% | 20~85 |
分流进入贫富液换热器2的物流含量/% | 10~85 |
分流后富液S5进塔塔板数 | 1~20 |
流程 | 系统再生能耗值/GJ·(tCO2)-1 | 节能率/% |
---|---|---|
常规捕集工艺 | 4.204 | — |
压缩式热泵+MVR热泵+级间冷却 | 3.080 | 29.101 |
压缩式热泵+MVR热泵+分流解吸 | 3.048 | 27.498 |
压缩式热泵+MVR热泵+分流解吸+级间冷却 | 2.533 | 39.748 |
压缩式热泵+MVR热泵+分流解吸+级间冷却+分布式换热 | 2.643 | 37.131 |
流程 | 系统再生能耗值/GJ·(tCO2)-1 | 节能率/% |
---|---|---|
常规捕集工艺 | 4.204 | — |
压缩式热泵+MVR热泵+级间冷却 | 3.080 | 29.101 |
压缩式热泵+MVR热泵+分流解吸 | 3.048 | 27.498 |
压缩式热泵+MVR热泵+分流解吸+级间冷却 | 2.533 | 39.748 |
压缩式热泵+MVR热泵+分流解吸+级间冷却+分布式换热 | 2.643 | 37.131 |
1 | O’BRIEN D, SHALLOO L, PATTON J, et al. Evaluation of the effect of accounting method, IPCC v. LCA, on grass-based and confinement dairy systems’ greenhouse gas emissions[J]. Animal, 2012, 6(9):1512-1527. |
2 | 秦大河, STOCKER T. IPCC第五次评估报告第一工作组报告的亮点结论[J]. 气候变化研究进展, 2014, 10(1):1-6. |
QIN Dahe, STOCKER T. Highlights of the IPCC working group Ⅰ fifth assessment report[J]. Climate Change Research, 2014, 10(1): 1-6. | |
3 | RHODES C J. The 2015 Paris climate change conference: COP21[J]. Sci. Prog., 2016, 99(1): 97-104. |
4 | 余云松. 化学吸收法捕集二氧化碳的过程集成及场协同研究[D]. 西安: 西安交通大学, 2012. |
YU Yunsong. Study of process integration and field synergy in carbon dioxide capture by chemical absorption[D]. Xi’an: Xi’an Jiaotong University, 2012. | |
5 | 高红霞. 低能耗新型脱碳工艺流程与捕获剂的开发及吸收剂降解性能研究[D]. 长沙: 湖南大学, 2016. |
GAO Hongxia. Development of innovative process configurations and solvents with low energy consumption and studies of amine degradation performance for carbon dioxide(CO2) capture[D]. Changsha: Hunan University, 2016. | |
6 | BAEK J I, YOON J H, EUM H M. Prediction of equilibrium solubility of carbon dioxide inaqueous 2-amino-2-methyl-1,3-propanediol solutions[J]. Korean Journal of Chemical Engineering, 2000, 17(4): 484-487. |
7 | PARK S W, CHOI B S, LEE J W. Chemical absorption of carbon dioxide with triethanolamine in non-aqueous solutions[J]. Korean Journal of Chemical Engineering, 2006, 23(1): 138-143. |
8 | WANG R, LI D F, LIANG D T. Modeling of CO2 capture by three typical amine solutionsin hollow fiber membrane contactors[J]. Chemical Engineering and Processing: Process Intensification, 2004, 43(7): 849-856. |
9 | IDEM R, EDALI M, ABOUDHEIR A. Kinetics, modeling, and simulation of the experimental kinetics data of carbon dioxide absorption into mixed aqueous solutions of MDEA and PZ using laminar jet apparatus with a numerically solved absorption-rate/kinetic model[J]. Energy Procedia, 2009, 1(1): 1343-1350. |
10 | 王金莲, 方梦祥, 晏水平, 等. 吸收CO2新型混合化学吸收剂的研究[J]. 环境科学, 2007, 28(11): 2630-2636. |
WANG Jinlian, FANG Mengxiang, YAN Shuiping, et al. Study of new blended chemical absorbents to absorb CO2[J]. Environmental Science, 2007, 28(11): 2630-2636. | |
11 | 陈龙. MEA对MDEA吸收CO2的影响特性[D]. 北京: 华北电力大学, 2013. |
CHEN Long. Impact of the addition of MEA to MDEA solution on MDEA’s absorption of carbon dioxide[D]. Beijing: North China Electric Power University, 2013. | |
12 | SAKWATTANAPONG R, AROONWILAS A, VEAWAB A. Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanolamines[J]. Industrial & Engineering Chemistry Research, 2005, 44(12): 4465-4473. |
13 | MANDAL B P, GUHA M, BISWAS A K, et al. Removal of carbon dioxide by absorption in mixed amines: modelling of absorption in aqueous MDEA/MEA and AMP/MEA solutions[J]. Chemical Engineering Science, 2001, 56(21): 6217-6224. |
14 | CUBE H L V, STEIMLE F. Heat pump technology[M]. London: Butterworth & Co., Ltd., 1981: 355-373. |
15 | JASSIM M S, ROCHELLE G T. Innovative absorber/stripper configurations for CO2 capture by aqueous monoethanolamine[J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2465-2472. |
16 | 李青, 余云松, 姜钧. 基于热泵技术的化学吸收法二氧化碳捕集系统[J]. 高校化学工程学报, 2010, 24(1): 29-34. |
LI Qing, YU Yunsong, JIANG Jun. CO2 capture by chemical absorption method based on heat pump technology[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(1): 29-34. |
[1] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[2] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[3] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[4] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[5] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[6] | LI Chunli, HAN Xiaoguang, LIU Jiapeng, WANG Yatao, WANG Chenxi, WANG Honghai, PENG Sheng. Research progress of liquid distributors in packed columns [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4479-4495. |
[7] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[8] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[9] | WU Zhenghao, ZHOU Tianhang, LAN Xingying, XU Chunming. AI-driven innovative design of chemicals in practice and perspective [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. |
[10] | ZHANG Zhichen, ZHU Yunfeng, CHENG Weishu, MA Shoutao, JIANG Jie, SUN Bing, ZHOU Zichen, XU Wei. Research advances on runaway decomposition of high pressure polyethylene: Reaction mechanism, initiation system and model [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3979-3989. |
[11] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[12] | LIN Hai, WANG Yufei. Distributed wind farm layout optimization considering noise constraint [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3394-3403. |
[13] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
[14] | HOU Dianbao, HE Maoyong, CHEN Yugang, YANG Haiyun, LI Haimin. Application analysis of resource allocation optimization and circular economy in development and utilization of potassium resources [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3197-3208. |
[15] | LU Shijian, ZHANG Yuanyuan, WU Wenhua, YANG Fei, LIU Ling, KANG Guojun, LI Qingfang, CHEN Hongfu, WANG Ning, WANG Feng, ZHANG Juanjuan. Health risk assessment of nitrosamine pollutant diffusion in a million ton CO2 capture project [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3209-3216. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 468
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 409
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |