Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (1): 119-128.DOI: 10.16085/j.issn.1000-6613.2019-0180
• Energy processes and technology • Previous Articles Next Articles
Xianglong CHENG1,2(),Jinju GUO1,2(),Haiyong ZHANG3,Jialiang SUN3,Yanbing ZHANG1,2,Chengjian SONG1,2
Received:
2019-01-23
Online:
2020-01-14
Published:
2020-01-05
Contact:
Jinju GUO
程相龙1,2(),郭晋菊1,2(),张海永3,孙加亮3,张延兵1,2,宋成建1,2
通讯作者:
郭晋菊
作者简介:
程相龙(1983—),男,博士,研究方向为煤炭热解和气化。E-mail:基金资助:
CLC Number:
Xianglong CHENG,Jinju GUO,Haiyong ZHANG,Jialiang SUN,Yanbing ZHANG,Chengjian SONG. Modeling of the entrained flow gasification reactor under the synergistic action of ligniteoxidation and steam gasification[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 119-128.
程相龙,郭晋菊,张海永,孙加亮,张延兵,宋成建. 褐煤氧化和气化反应协同作用下夹带流反应器的建模[J]. 化工进展, 2020, 39(1): 119-128.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0180
工业分析/% | 元素分析/% | |||||||
---|---|---|---|---|---|---|---|---|
Mad | A | V | FC | C | H | S | Oa N | |
5.89 | 9.87 | 36.23 | 53.90 | 62.26 | 6.12 | 0.66 | 29.85 1.11 |
工业分析/% | 元素分析/% | |||||||
---|---|---|---|---|---|---|---|---|
Mad | A | V | FC | C | H | S | Oa N | |
5.89 | 9.87 | 36.23 | 53.90 | 62.26 | 6.12 | 0.66 | 29.85 1.11 |
方程系数 | 变量 | 矩阵积 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cchar | 0.75 | 0.8 | 0.43 | 0.27 | Ctar | 0 | 0 | 0 | 0 | CHAR | Clignite | |
Hchar | 0.25 | 0.2 | 0 | 0 | Htar | 1 | 0.11 | 0.18 | 0.06 | CH4 | Hlignite | |
Ochar | 0 | 0 | 0.57 | 0.73 | Otar | 0 | 0.89 | 0 | 0 | C2H6 | Olignite | |
Nchar | 0 | 0 | 0 | 0 | Ntar | 0 | 0 | 0.82 | 0 | CO | Nlignite | |
Schar | 0 | 0 | 0 | 0 | Star | 0 | 0 | 0 | 0.94 | CO2 | Slignite | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | TAR | 1-VOL | |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | H2 | 1.19 Hlignite | |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | H2O | 1.17 Hlignite | |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | NH3 | 0.31 Olignite | |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | H2S | 0.14Olignite |
方程系数 | 变量 | 矩阵积 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cchar | 0.75 | 0.8 | 0.43 | 0.27 | Ctar | 0 | 0 | 0 | 0 | CHAR | Clignite | |
Hchar | 0.25 | 0.2 | 0 | 0 | Htar | 1 | 0.11 | 0.18 | 0.06 | CH4 | Hlignite | |
Ochar | 0 | 0 | 0.57 | 0.73 | Otar | 0 | 0.89 | 0 | 0 | C2H6 | Olignite | |
Nchar | 0 | 0 | 0 | 0 | Ntar | 0 | 0 | 0.82 | 0 | CO | Nlignite | |
Schar | 0 | 0 | 0 | 0 | Star | 0 | 0 | 0 | 0.94 | CO2 | Slignite | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | TAR | 1-VOL | |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | H2 | 1.19 Hlignite | |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | H2O | 1.17 Hlignite | |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | NH3 | 0.31 Olignite | |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | H2S | 0.14Olignite |
水蒸气体积分数/% | K1 | K2 |
---|---|---|
25 | 0.031 | 1.111 |
35 | 0.030 | 0.799 |
水蒸气体积分数/% | K1 | K2 |
---|---|---|
25 | 0.031 | 1.111 |
35 | 0.030 | 0.799 |
温度/℃ | H2O体积分数/% | K1 | |
---|---|---|---|
H2O气氛 | H2O+1% O2气氛 | ||
800 | 25 | 0.031 | 0.096 |
800 | 35 | 0.030 | 0.084 |
900 | 25 | 0.006 | 0.256 |
900 | 35 | 0.008 | 0.251 |
温度/℃ | H2O体积分数/% | K1 | |
---|---|---|---|
H2O气氛 | H2O+1% O2气氛 | ||
800 | 25 | 0.031 | 0.096 |
800 | 35 | 0.030 | 0.084 |
900 | 25 | 0.006 | 0.256 |
900 | 35 | 0.008 | 0.251 |
水蒸气 | H2O气氛 | H2O+1% O2气氛 | |||||
---|---|---|---|---|---|---|---|
总孔容/cm3?g-1 | 微孔容/cm3?g-1 | 比表面积/cm2?g-1 | 总孔容/cm3?g-1 | 微孔容/cm3?g-1 | 比表面积/cm2?g-1 | ||
25% H2O | 0.0373 | 0.0044 | 10.6599 | 0.2393 | 0.1701 | 345.852 | |
35% H2O | 0.0431 | 0.0045 | 10.8629 | 0.2446 | 0.1852 | 391.266 |
水蒸气 | H2O气氛 | H2O+1% O2气氛 | |||||
---|---|---|---|---|---|---|---|
总孔容/cm3?g-1 | 微孔容/cm3?g-1 | 比表面积/cm2?g-1 | 总孔容/cm3?g-1 | 微孔容/cm3?g-1 | 比表面积/cm2?g-1 | ||
25% H2O | 0.0373 | 0.0044 | 10.6599 | 0.2393 | 0.1701 | 345.852 | |
35% H2O | 0.0431 | 0.0045 | 10.8629 | 0.2446 | 0.1852 | 391.266 |
反应 | 速率方程 | 参考文献 |
---|---|---|
C+CO2 | Dobner[ | |
C+2H2 | Wen和Chuang[ | |
CO+H2O | Singh和Saraf[ | |
CO+3H2 | 于建国等[ | |
Y+O2 | 岑可法等[ |
反应 | 速率方程 | 参考文献 |
---|---|---|
C+CO2 | Dobner[ | |
C+2H2 | Wen和Chuang[ | |
CO+H2O | Singh和Saraf[ | |
CO+3H2 | 于建国等[ | |
Y+O2 | 岑可法等[ |
1 | 王毅. 块状褐煤高温蒸汽热解的宏细观特性分析及应用[M]. 徐州: 中国矿业大学出版社, 2012:6. |
WANG Yi. Macro & micro characteristic analysis and application for massive lignite high temperature steam pyrolysis[M]. Xuzhou: China University of Mining and Technology Press, 2012:6. | |
2 | LI C Z. Importance of volatile-char interactions during the pyrolysis and gasification of low-rank fuels-areview[J]. Fuel, 2013,112(1): 609-623. |
3 | TAY H L, KAJITAANI S, ZHANG S, et al. Effects of gasifying agent on the evolution of char structure during the gasification of Victorianbrown coal[J]. Fuel, 2013,103(1):22-28. |
4 | ZENG X, WANG Y, HANZ, et al. Characterization and pilot scale test of a fluidized bed two-stage gasification process for the production of clean industrial fuel gas from low-rank coal[J]. Carbon Resources Conversion, 2018, 2(1): 73-80. |
5 | LEE J G, KIM J H, LEE H G. Characteristics of entrained flow coal gasification in a drop tube reactor[J]. Fuel, 1996, 75(9): 1035-1042. |
6 | TAY H L, LI C Z. Changes in char reactivity and structure during the gasification of a Victorianbrown coal: comparison between gasification in O2 and CO2[J]. Fuel Process Technol., 2010, 91(8): 800-804. |
7 | CMOMARKOVIC N, REPIC B, MLADENOVIC R, et al. Experimental investigation of role of steam in entrained flow coal gasification[J]. Fuel,2007, 86(1): 194-202. |
8 | 程相龙, 王永刚, 孙加亮, 等. 氧化反应对胜利褐煤水蒸气气化反应的促进作用Ⅰ: 宏观反应特性研究[J]. 燃料化学学报, 2017, 45(1): 15-20. |
CHENG Xianglong, WANG Yonggang, SUN Jialiang, et al. Promoting effect of oxidation reaction on steam gasification reaction in Shengli lignite gasification process Ⅰ: macroscopic reaction characteristic[J]. Journal of Fuel Chemistry and Technology, 2017, 45(1): 15-20. | |
9 | 程相龙, 王永刚, 孙加亮,等. 氧化反应对胜利褐煤水蒸气气化反应的促进作用Ⅱ:作用机理研究[J]. 燃料化学学报, 2017, 45(2): 1-9. |
CHENG Xianglong, WANG Yonggang, SUN Jialiang, et al. Promoting effect of oxidation reaction on steam gasification reaction in Shengli lignite gasification process Ⅱ:mechanismstudy[J]. Journal of Fuel Chemistry and Technology, 2017, 45(2): 1-9. | |
10 | 孙加亮. 褐煤温和气化特性的研究[D]. 北京: 中国矿业大学(北京), 2015. |
SUN Jialiang. Studies on gasification characteristics of brown coal in mild conditions[D]. Beijing: China University of Mining & Technology, Beijing, 2015. | |
11 | SUN J L, CHEN X J, WANG F, et al. Effects of oxygen on the structure and reactivity of char during steam gasification of Shengli brown coal[J]. Journal of Fuel Chemistry & Technology, 2015, 43(7):769-778. |
12 | 程相龙, 郭晋菊, 王永刚,等.不同反应器中氧化反应与水蒸气气化反应协同作用差异性[J]. 化工进展, 2019, 38(5):2179-2188. |
CHENG Xianglong, GUO Jinju, WANG Yonggang, et al. Synergistic effect of oxidation reaction and steam gasification reaction in different reactors[J] . Chemical Industry and Engineering Progress, 2019, 38(5):2179-2188. | |
13 | 王永刚, 孙加亮, 张书. 反应气氛对褐煤气化反应性及半焦结构的影响[J]. 煤炭学报, 2014, 39(8): 1765-1771. |
WANG Yonggang, SUN Jialiang, ZHANG Shu. Impacts of the gas atmosphere on the gasification reactivity and char structure of the brown coal[J]. J. China Coal Soc., 2014, 39(8):1765-1771. | |
14 | MONAGHAN R F D, GHONIEM A F. A dynamic reduced order model for simulating entrained flow gasfiers. part Ⅰ: Model development and description[J]. Fuel, 2012, 91(1):61-80. |
15 | GAZZANI M, MANZOLINI G, MACCHI, et al. Reduced order modeling of the shell-prenflo entrained flow gasifier[J]. Fuel, 2013, 104(2):822-837. |
16 | MUCHI I, MORI S, HORIO M. Reaction engineering in fluidized beds[M]. Tokyo: Baifukan, 1994. |
17 | YANG W C, KEAIRNS D L. Estimating the jet penetration depth of multiple vertical grid jets[J]. Industrial & Engineering Chemistry Fundamentals, 1979, 18(4): 317-320. |
18 | WEN C Y, CHAUNG T Z. Entrainment coal gasification modeling[J]. Industrial & Engineering Chemistry Process Design and Development,1979, 18(4): 684-695. |
19 | 贺永德. 现代煤化工技术手册[M]. 2版. 北京: 化学工业出版社, 2011. |
HE Yongde. Modern coal chemical industry technical manuals[M].2nd ed. Beijing: Chemical Industry Press, 2011. | |
20 | BURNHAM A K.An nth-order Gaussian energy distribution model for sintering[J].Chemical Engineering Journal, 2005, 108(1/2):47-50. |
21 | MIURA K. A new and simple method to estimate f(E) and k0(E) in the distributed activation energy model from three sets of experimental data[J]. Energy & Fuels, 1995, 9(2):302-307. |
22 | SCOTT S A, DENNIS J S, DAVIDSON J F, et al.An algorithm for determining the kinetics of devolatilisation of complex solid fuels from thermogravimetric experiments[J]. Chemical Engineering Science, 2006, 61(8):2339-2348. |
23 | SOLOMON P R, COLKET M B. Coal devolatilization[J]. Symposium (International) on Combustion, 1979, 17(1):131-143. |
24 | SUUBERG E M, PETERS W A, HOWARD J B. Product compositions and formation kinetics in rapid pyrolysis of pulverized coal-implications for combustion[J]. Symposium (International) on Combustion, 1979, 17(1):117-130. |
25 | FIELD M A. Rate of combustion of size-graded fractions of char from a low-rank coal between 1200K and 2000K[J]. Combustion and Flame, 1969, 13(3): 237-252. |
26 | KIMURA T, KOJIMA T. Numerical model for reactions in a jetting fluidized bed coal gasifier [J]. Chemical Engineering Science, 1992, 47(9): 2529-2534. |
27 | JOHNSON J L. Kinetics of coal gasification [M]. New York: John Willy and Sons, 1979. |
28 | ZENG X, WANG Y, YU J, et al. Gas upgrading in a downdraft fixed-bed reactor downstream of a fluidized-bed coal pyrolyzer[J]. Energy & Fuels, 2011, 25(11): 5242-5249. |
29 | ZENG X, WANG Y, YU J, et al. Coal pyrolysis in a fluidized bed for adapting to a two-stage gasification process[J]. Energy & Fuels, 2011, 25(3):1092-1098. |
30 | DOBNER S. Modeling of entrained bed gasification: the issues[R]. Palo Alto, California: Electric Power Research Institute, 1976. |
31 | SINGH C P P, SARAF D N. Simulation of high-temperature water-gas shift reactors[J]. Industrial & Engineering Chemistry Process Design & Development,1977, 16(3):313-319. |
32 | 于建国, 于遵宏, 孙杏元, 等. SDM-1型耐硫甲烷化催化剂宏观动力学[J].化工学报,1994, 45(1):120-124. |
YU Jianguo, YU Zunhong, SUN Xingyuan, et al. Macrokinetics of sulfur-tolerant methanation SDM-1 catalyst[J]. Journal of Chemical Industry and Engineering (China), 1994, 45(1): 120-124. | |
33 | 岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论:设计与运行[M].北京:中国电力出版社,1998. |
CEN K F, NI M J, LUO Z Y,et al. Theories, of circulating fluidized bed boiler[M].Beijing: China Electric Power Press, 1998. |
[1] | WANG Yunfei, QIN Rui, ZHENG Lijun, LI Yan, LI Qingping. Research progress of rotating packed bed simulation through CFD method [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 1-9. |
[2] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[3] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[4] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[5] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[6] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[7] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[8] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[9] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[10] | WU Zhenghao, ZHOU Tianhang, LAN Xingying, XU Chunming. AI-driven innovative design of chemicals in practice and perspective [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. |
[11] | ZHANG Zhichen, ZHU Yunfeng, CHENG Weishu, MA Shoutao, JIANG Jie, SUN Bing, ZHOU Zichen, XU Wei. Research advances on runaway decomposition of high pressure polyethylene: Reaction mechanism, initiation system and model [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3979-3989. |
[12] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[13] | YANG Xuzhao, LI Qing, YUAN Kangkang, ZHANG Yingying, HAN Jingli, WU Shide. Thermodynamic properties of Gemini ionic liquid based deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3123-3129. |
[14] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
[15] | LU Shijian, ZHANG Yuanyuan, WU Wenhua, YANG Fei, LIU Ling, KANG Guojun, LI Qingfang, CHEN Hongfu, WANG Ning, WANG Feng, ZHANG Juanjuan. Health risk assessment of nitrosamine pollutant diffusion in a million ton CO2 capture project [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3209-3216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |