Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (s1): 10-18.DOI: 10.16085/j.issn.1000-6613.2019-1108
• Chemical processes and equipment • Previous Articles Next Articles
YANG Yujie1, CHEN Wenwen1, ZHANG Qian2, LI Lei2, LIN Song3, WANG Zaiqian3, LI Wangliang2
Received:
2019-07-11
Revised:
2019-07-23
Online:
2019-11-16
Published:
2019-11-16
杨玉洁1, 陈雯雯1, 张倩2, 李蕾2, 林松3, 王在谦3, 李望良2
通讯作者:
李蕾,博士,助理副研究员,研究方向为油水分离;李望良,博士,研究员,研究方向为油水聚结分离、清洁燃料。
作者简介:
杨玉洁(1995-),女,硕士研究生,研究方向为油水分离。E-mail:1256761405@qq.com。
基金资助:
CLC Number:
YANG Yujie, CHEN Wenwen, ZHANG Qian, LI Lei, LIN Song, WANG Zaiqian, LI Wangliang. Coalescence technology and its application in the separation of oil and water emulsion[J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 10-18.
杨玉洁, 陈雯雯, 张倩, 李蕾, 林松, 王在谦, 李望良. 聚结技术及其乳化油水分离性能[J]. 化工进展, 2019, 38(s1): 10-18.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-1108
[1] 桑义敏, 云昊, 韩严和, 等. 污水中油滴聚结机理与材料聚结技术研究进展[J]. 工业水处理, 2016, 36(10):6-10. SANG Yimin, YUN Hao, HAN Yanhe, et al. Progress in the research on coalescence mechanism of oil drops in wastewater and material coalescence technology[J]. Industrial Water Treatment, 2016, 36(10):6-10. [2] HU D, ZHANG Q, YANG C, et al. Process diagnosis of coalescence separation of oil-in-water emulsions-two case studies[J]. Journal of Dispersion Science and Technology, 2019, 40(5):745-755. [3] 段传虎. 刍议油水分离中聚结分离技术的应用[J]. 科技风, 2018(10):124. DUAN Chuanhu. Discussion on the application of coalescence separation technology in oil-water separation[J]. Science and Technology, 2018(10):124. [4] 蒋昊琳, 杨明全, 张振超, 等. 含油污水聚结除油研究进展[J]. 能源化工, 2016, 37(2):27-31. JIANG Haolin, YANG Mingquan, ZHANG Zhenchao, et al. Research progress for coalescent removing oil from oily sewage[J]. Energy Chemical Industry, 2016, 37(2):27-31. [5] 余晓月. 非尺寸因素对聚结板内油水分离性能的影响研究[D]. 西安:西安石油大学, 2016. YU X Y. Study on the effect of non-dimensional factor on the oil-water separation performance of the corrugated plate[D]. Xi'an:Xi'an Shiyou University, 2016. [6] 刘丽艳, 侯立飞, 谭蔚, 等. 油水乳状液中水滴在疏水纤维丝上的聚结实验研究[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(3):271-277. LIU Liyan, HOU Lifei, TAN Wei, et al. Coalescence of water droplets on hydrophobic fibers in water-in-oil emulsion[J]. Journal of Tianjin University(Science and Technology), 2018, 51(3):271-277. [7] GADHAVE A D, MEHDIZADEH S N, CHASE G G. Effect of pore size and wettability of multilayered coalescing filters on water-in-ULSD coalescence[J]. Separation and Purification Technology, 2019, 221:236-248. [8] LUO X, HUANG X, YAN H, et al. An experimental study on the coalescence behavior of oil droplet in ASP solution[J]. Separation and Purification Technology, 2018, 203:152-158. [9] 王志华, 柏晔, 娄玉华, 等. 二元复合驱采出液乳化行为及破乳影响因素[J]. 石油化工高等学校学报, 2018, 31(6):33-40. WANG Zhihua, BAI Ye, LOU Yuhua, et al. Emulsification and demulsification of produced liquid in surfactant/polymer combination flooding[J]. Journal of Petrochemical Universities, 2018, 31(6):33-40. [10] KHAN J A, AL-KAYIEM H H, ALEEM W, et al. Influence of alkali-surfactant-polymer flooding on the coalescence and sedimentation of oil/water emulsion in gravity separation[J]. Journal of Petroleum Science and Engineering, 2019, 173:640-649. [11] WANG Z, CHEN R, ZHU X, et al. Dynamic behaviors of the coalescence between two droplets with different temperatures simulated by the VOF method[J]. Applied Thermal Engineering, 2018, 131:132-140. [12] LI Y, Qin G, XIONG Z, et al. The effect of particle humidity on separation efficiency for an axial cyclone separator[J]. Advanced Powder Technology, 2019, 30(4):724-731. [13] KAMP J, KRAUME M. From single drop coalescence to droplet swarms-scale-up considering the influence of collision velocity and drop size on coalescence probability[J]. Chemical Engineering Science, 2016, 156:162-177. [14] BAHRAMI B, MOHSENPOUR S, SHAMSHIRI Noghabi H R, et al. Estimation of flow rates of individual phases in an oil-gas-water multiphase flow system using neural network approach and pressure signal analysis[J]. Flow Measurement and Instrumentation, 2019, 66:28-36. [15] LIU L, HOU L, TAN W, et al. A visible coalescence of droplets on hydrophobic and hydrophilic fibers in water-in-oil emulsion[J]. Journal of Dispersion Science and Technology, 2017, 38(12):1719-1725. [16] LI Y, GONG H, DONG M, et al. Separation of water-in-heavy oil emulsions using porous particles in a coalescence column[J]. Separation and Purification Technology, 2016, 166:148-156. [17] ZHANG Q, LI L, LI Y X, et al. Surface wetting-driven separation of surfactant-stabilized water-oil emulsions[J]. Langmuir, 2018, 34(19):5505-5516. [18] KUNDU P, KUMAR V, MISHR I M. Experimental study on flow and rheological behavior of oil-in-water emulsions in unconsolidated porous media:effect of particle size and phase volume fractions[J]. Powder Technology, 2019, 343:821-833. [19] 杨琳. 基于聚结构件的油水分离器工艺参数优化研究[D]. 西安:西安石油大学, 2018. YANG Lin. Study on optimization of process parameters of oil-water separator based on coalescence separation[D]. Xi'an:Xi'an Shiyou University, 2018. [20] MINO Y, HASEGAWA A, SHINTO H, et al. Lattice-Boltzmann flow simulation of an oil-in-water emulsion through a coalescing filter:effects of filter structure[J]. Chemical Engineering Science, 2018, 177:210-217. [21] YU Y, LIU M, HUANG H, et al. Low cost fabrication of polypropylene fiber composite membrane with excellent mechanical, superhydrophilic, antifouling and antibacterical properties for effective oil-in-water emulsion separation[J]. Reactive and Functional Polymers, 2019, 142:15-24. [22] SONG Y Z, KONG X, YIN X, et al. Tannin-inspired superhydrophilic and underwater superoleophobic polypropylene membrane for effective oil/water emulsions separation[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2017, 522:585-592. [23] SUN Y, YANG Z, LI L, et al. Facile preparation of isotactic polypropylene microporous membranes with bioinspired hierarchical morphology for nano-scale water-in-oil emulsion separation[J]. Journal of Membrane Science, 2019, 581:224-235. [24] DING L P, GAO J, CHUNG T S. Schiff base reaction assisted one-step self-assembly method for efficient gravity-driven oil-water emulsion separation[J]. Separation and Purification Technology, 2019, 213:437-446. [25] 徐卜琴, 赵宗倩, 徐桂龙, 等. 超疏水超亲油玻璃纤维过滤膜的制备及其乳化水分离效率[J]. 硅酸盐学报, 2018, 46(8):1173-1177. XU Puqin, ZHAO Zongqian, XU Guilong, et al. Preparation of superhydrophobic and superoleophilic glass-fiber membrane and its emulsified water separation efficiency[J]. Journal of the Chinese Ceramic Society, 2018, 46(8):1173-1177. [26] PHIRI I, EUM K Y, KIM J W, et al. Simultaneous complementary oil-water separation and water desalination using functionalized woven glass fiber membranes[J]. Journal of Industrial and Engineering Chemistry, 2019, 73:78-86. [27] ROSTAMI A, SHARIFNIA S. Fabrication of robust and durable superhydrophobic fiberglass fabrics for oil-water separation based on self-assembly of novel N-TESPO and N-TESPS reagents[J]. Journal of Materials Chemistry A, 2017, 5(2):680-688. [28] LIX Y, HU D, HUANG K, et al. Hierarchical rough surfaces formed by LBL self-assembly for oil-water separation[J]. Journal of Materials Chemistry A, 2014, 2(30):11830-11838. [29] CHEN J, ZHOU Y, ZHOU C, et al. A durable underwater superoleophobic and underoil superhydrophobic fabric for versatile oil/water separation[J]. Chemical Engineering Journal, 2019, 370:1218-1227. [30] LIU M M, LI J, HOU Y Y, et al. Inorganic adhesives for robust superwetting surfaces[J]. ACS Nano, 2017, 11(1):1113-1119. [31] JIANG L, TANG Z G, Park-Lee K J, et al. Fabrication of non-fluorinated hydrophilic-oleophobic stainless steel mesh for oil-water separation[J]. Separation and Purification Technology, 2017, 184:394-403. [32] 杨啸天, 帅茜, 罗艳梅, 等. 聚二甲基硅氧烷/微纳米银/聚多巴胺修饰的超疏水海绵的制备和应用[J]. 应用化学, 2015, 32(6):726-732. YANG Xiaotian, SHUAI Qian, LUO Yanmei, et al. Fabrication and application of the superhydrophobic sponge modified with poly (dimethylsiloxane)/silver micro/nano-particles/polydopamine[J]. Chinese Journal of Applied Chemistry, 2015, 32(6):726-732. [33] WAN Z, LI D, JIAO Y, et al. Bifunctional MoS2 coated melamine-formaldehyde sponges for efficient oil-water separation and water-soluble dye removal[J]. Applied Materials Today, 2017, 9:551-559. [34] LI Y, ZHANG Z Z, WANG M K, et al. One-pot fabrication of nanoporous polymer decorated materials:from oil-collecting devices to high-efficiency emulsion separation[J]. Journal of Materials Chemistry A, 2017, 5(10):5077-5087. [35] YANG J B, WANG H C, TAO Z A, et al. 3D superhydrophobic sponge with a novel compression strategy for effective water-in-oil emulsion separation and its separation mechanism[J]. Chemical Engineering Journal, 2019, 359:149-158. [36] WANG N, DENG Z. Synthesis of magnetic, durable and superhydrophobic carbon sponges for oil/water separation[J]. Materials Research Bulletin, 2019, 115:19-26. [37] XU L, CHEN Y, LIU N, et al. Breathing demulsification:a three-dimensional(3D) free-standing superhydrophilic sponge[J]. ACS Applied Materials & Interfaces, 2015, 7(40):22264-22271. [38] WU Z Z, LI Y Z, ZHANG L P, et al. Thiol-ene click reaction on cellulose sponge and its application for oil/water separation[J]. RSC Advances, 2017, 7(33):20147-20151. [39] HU D, LI X Y, I L, et al. Designing high-caliber nonwoven filter mats for coalescence filtration of oil/water emulsions[J]. Separation and Purification Technology, 2015, 149:65-73. [40] LI Y X, CAO L X, HU D, et al. Uncommon wetting on a special coating and its relevance to coalescence separation of emulsified water from diesel fuel[J]. Separation and Purification Technology, 2017, 176:313-322. [41] LIU F, MA M, ZANG D, et al. Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation[J]. Carbohydrate Polymers, 2014, 103:480-487. [42] DEL BLANCO M V, FISCHER E J, CABANE E. Underwater superoleophobic wood cross sections for efficient oil/water separation[J]. Advanced Materials Interfaces, 2017, 4(21):1700584. [43] ZHANG W F, LIU N, CAO Y Z, et al. Superwetting porous materials for wastewater treatment:from immiscible oil/water mixture to emulsion separation[J]. Advanced Materials Interfaces, 2017, 4(10):1700029. [44] 袁静, 廖芳芳, 郭雅妮, 等. 超亲水超疏油油水分离膜的制备及其性能[J]. 化学进展, 2019, 31(1):144-155. YUAN Jing, LIAO Fangfang, GUO Yani, et al. Preparation and performance of superhydrophilic and superoleophobic membrane for oil/water separation[J]. Progress In Chemistry, 2019, 31(1):144-155. [45] 屈孟男, 马利利, 何金梅, 等. 特异润湿型油水分离材料的研究进展[J]. 材料导报, 2017, 31(19):152-161. QU Mengnan, MA Lili, HE Jinmei, et al. Research progress of specific wetting oil-water separation materials[J]. Materials Reports, 2017, 31(19):152-161. [46] LI J J, ZHOU Y N, LUO Z H. Polymeric materials with switchable superwettability for controllable oil/water separation:a comprehensive review[J]. Progress in Polymer Science, 2018, 87:1-33. [47] KONG T, LUO G, ZHAO Y, et al. Bioinspired superwettability micro/nanoarchitectures:fabrications and applications[J]. Advanced Functional Materials, 2019, 29(11):1808012. [48] 佟威, 熊党生. 仿生超疏水表面的发展及其应用研究进展[J]. 无机材料学报, doi:10.15541/jim20180591. TONG Wei, XIONG Dangsheng. Bioinspired superhydrophobic progress and recent advances of its functional application[J]. Journal of Inorganic Materials, doi:10.15541/jim20180591. [49] CAO J L, SU Y L, LI Y N, et al. Self-assembled MOF membranes with underwater superoleophobicity for oil/water separation[J]. Journal of Membrane Science, 2018, 566:268-277. [50] LI X Y, HU D, CAO L X, et al. Sensitivity of coalescence separation of oil-water emulsions using stainless steel felt enabled by LBL self-assembly and CVD[J]. RSC Advances, 2015, 5(87):71345-71354. [51] JOO M, SHIN J, KIM J, et al. One-step synthesis of cross-linked ionic polymer thin films in vapor phase and its application to an oil/water separation membrane[J]. Journal of the American Chemical Society, 2017, 139(6):2329-2337. [52] WEN N, MIAO X R, YANG X J, et al. An alternative fabrication of underoil superhydrophobic or underwater superoleophobic stainless steel meshes for oil-water separation:originating from one-step vapor deposition of polydimethylsiloxane[J]. Separation and Purification Technology, 2018, 204:116-126. [53] ZAREEI POUR F, KARIMI H, MADAD AVARGANI V. Preparation of a superhydrophobic and superoleophilic polyester textile by chemical vapor deposition of dichlorodimethylsilane for water-oil separation[J]. Polyhedron, 2019, 159:54-63. [54] FENG X, LI J, ZHANG X, et al. Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare[J]. Journal of Controlled Release, 2019, 302:19-41. [55] LIAO Y, LOH C H, TIAN M, et al. Progress in electrospun polymeric nanofibrous membranes for water treatment:fabrication, modification and applications[J]. Progress in Polymer Science, 2018, 77:69-94. [56] XUE J, WU T, DAI Y, et al. Electrospinning and electrospun nanofibers:methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8):5298-5415. [57] Hou L L, Wang N, Wu J, et al. Bioinspired superwettability electrospun micro/nanofibers and their applications[J]. Advanced Functional Materials, 2018, 28(49):1801114. [58] GE J L, ZONG D D, JIN Q, et al. Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions[J]. Advanced Functional Materials, 2018, 28(10):1705051. [59] WU J D, DING Y J, WANG J Q, et al. Facile fabrication of nanofiber-and micro/nanosphere-coordinated PVDF membrane with ultrahigh permeability of viscous water-in-oil emulsions[J]. Journal of Materials Chemistry A, 2018, 6(16):7014-7020. [60] HUANG Y, XIAO C F, HUANG Q L, et al. Robust preparation of tubular PTFE/FEP ultrafine fibers-covered porous membrane by electrospinning for continuous highly effective oil/water separation[J]. Journal of Membrane Science, 2018, 568:87-96. [61] 黄卫星, 何雄元, 邓朝俊, 等. 聚结板强化油水分离过程的机理研究[J]. 工程科学与技术, 2017, 49(3):191-196. HUANG Weixing, HE Xiongyuan, DENG Chaojun, et al. Study on the intensification mechanism of oil-water separation process by using inclined plate pack[J]. Anvanced Engineering Sciences, 2017, 49(3):191-196. [62] HAN Y, HE L, LUO X, et al. A review of the recent advances in design of corrugated plate packs applied for oil-water separation[J]. Journal of Industrial and Engineering Chemistry, 2017, 53:37-50. [63] 齐玉成, 赵会军, 邵悦, 等. 波纹板聚结分离器分离效率影响因素研究[J]. 常州大学学报(自然科学版), 2016, 28(2):67-72. QI Yucheng, ZHAO Huijun, SHAO Yue, et al. On the influencing factors of separation efficiency of corrugated plate coalescing separator[J]. Journal of Changzhou University (Natural Science Edition), 2016, 28(2):67-72. [64] LUO H, YANG X, LU Z, et al. Effect of drainage layer on oil distribution and separation performance of fiber-bed coalescer[J]. Separation and Purification Technology, 2019, 218:173-180. [65] 郭骥, 姬忠礼. 苯酚浓度对亲油疏水型滤材聚结性能的影响[EB/OL]. 北京:过程工程学报, 2019[2019-07-23]. http://kns.cnki.net/kcms/detail/11.4541.TQ.20190424.1340.002.html. GUO Ji, JI Zhongli. Influence of phenol concentration on coalescence performance of an oleophilichydrophobic filter material[J]. The Chinese Journal of Process Engineering, 2019[2019-07-23]. http://kns.cnki.net/kcms/detail/11.4541.TQ.20190424.1340.002.html. |
[1] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[2] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[3] | WANG Qi, KOU Lihong, WANG Guanyu, WANG Jikun, LIU Min, LI Lanting, WANG Hao. Molecular recognition of dissolved organic matter in bio-treated effluent of coking wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4984-4993. |
[4] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
[5] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[6] | CHEN Na, ZHANG Xiaojing, ZHANG Nan, MA Bingbing, ZHANG Han, YANG Haojie, ZHANG Hongzhong. Effect of quenching enzymes on partial nitrification-mixed autotrophic nitrogen removal system [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3816-3823. |
[7] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[8] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
[9] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[10] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[11] | ZHU Hao, LIU Hanfei, GAO Yuan, BAI Rongrong, NI Songbo, HUANG Yiping, LI Qingtong, LI Xiaodong, HAN Weiqing. Parameter optimization of jet aeration in catalytic ozonation system and analysis of stage oxidation of phenol [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2717-2723. |
[12] | HUANG Qizhong, LIU Bing, MA Hongpeng, LYU Wenjie. Methanol to olefin wastewater treatment based on a novel microchannel separation technology [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 669-676. |
[13] | YANG Kailu, CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Research progress of preparation and modification of nanofiltration membrane for dye wastewater treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5470-5486. |
[14] | WANG Dawei, BI Chunmeng, QIN Yongli, JIANG Yongrong, XIE Huabin, MAO Yukun, MIAO Xueyan. Sulfate-reducing activated sludge for immobilization of cadmium in acid mine drainage by mineralization [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5509-5519. |
[15] | YING Luyao, WANG Rongchang. Removal pathways of antibiotic pollutants by bacterial-algal consortium and its stress response mechanisms [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 469-479. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |