Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (1): 181-189.DOI: 10.16085/j.issn.1000-6613.2019-0218
• Industrial catalysis • Previous Articles Next Articles
Mengdi DOU1,2(),Xuejie DING1,2,Wenxin LIU1,2,Wei ZHANG1,2,Mohong LU1,2,Mingshi LI1,2,Jie ZHU1,2()
Received:
2019-02-14
Online:
2020-01-14
Published:
2020-01-05
Contact:
Jie ZHU
窦梦迪1,2(),丁雪洁1,2,刘雯欣1,2,张伟1,2,鲁墨弘1,2,李明时1,2,朱劼1,2()
通讯作者:
朱劼
作者简介:
窦梦迪(1994—),女,硕士研究生,研究方向为工业催化。E-mail:基金资助:
CLC Number:
Mengdi DOU,Xuejie DING,Wenxin LIU,Wei ZHANG,Mohong LU,Mingshi LI,Jie ZHU. Carbon nanotubes supported palladium catalyst with wettability controllable surface and its catalytic performance in selective hydrogenation of 1,8-dinitronaphthalene[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 181-189.
窦梦迪,丁雪洁,刘雯欣,张伟,鲁墨弘,李明时,朱劼. 表面润湿性可控的碳纳米管负载钯催化剂及其在1,8-二硝基萘选择性加氢中的催化性能[J]. 化工进展, 2020, 39(1): 181-189.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0218
样品 | C/% | H/% | N/% | PNIPAM/% |
---|---|---|---|---|
CNT | 96.37 | 0.32 | — | — |
CNT-PNIPAM | 77.45 | 2.45 | 2.73 | 31.0 |
样品 | C/% | H/% | N/% | PNIPAM/% |
---|---|---|---|---|
CNT | 96.37 | 0.32 | — | — |
CNT-PNIPAM | 77.45 | 2.45 | 2.73 | 31.0 |
样品 | BET比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
CNT | 217 | 0.71 | 13.1 |
CNT-A | 221 | 0.77 | 14.5 |
CNT-PNIPAM | 169 | 0.76 | 18.2 |
样品 | BET比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
CNT | 217 | 0.71 | 13.1 |
CNT-A | 221 | 0.77 | 14.5 |
CNT-PNIPAM | 169 | 0.76 | 18.2 |
样品 | Pd负载量①/% | Pd纳米颗粒粒径②/nm | Pd分散度③/% |
---|---|---|---|
Pd/CNT | 1.02 | 10.7±3.0 | 12.1±3.5 |
Pd/CNT-A | 0.96 | 4.6±0.8 | 26.2±3.6 |
Pd/CNT-PNIPAM | 1.04 | 3.6±0.8 | 34.9±7.8 |
样品 | Pd负载量①/% | Pd纳米颗粒粒径②/nm | Pd分散度③/% |
---|---|---|---|
Pd/CNT | 1.02 | 10.7±3.0 | 12.1±3.5 |
Pd/CNT-A | 0.96 | 4.6±0.8 | 26.2±3.6 |
Pd/CNT-PNIPAM | 1.04 | 3.6±0.8 | 34.9±7.8 |
样品 | 转化率/% | 选择性/% | 收率/% |
---|---|---|---|
CNT-PNIPAM-R1 | 98.82 | 97.68 | 96.53 |
CNT-PNIPAM-R2 | 94.26 | 96.92 | 91.36 |
CNT-PNIPAM-R3 | 84.50 | 97.36 | 82.27 |
样品 | 转化率/% | 选择性/% | 收率/% |
---|---|---|---|
CNT-PNIPAM-R1 | 98.82 | 97.68 | 96.53 |
CNT-PNIPAM-R2 | 94.26 | 96.92 | 91.36 |
CNT-PNIPAM-R3 | 84.50 | 97.36 | 82.27 |
1 | 刘树文 . 合成香料技术手册[M]. 北京: 中国轻工业出版社, 2000: 13-107, 160-243. |
LIU S W . Synthetic spice technical manual[M]. Beijing: China Light Industry Press, 2000: 13-107, 160-243. | |
2 | 许关煜 . 医药中间体手册(上册)[M]. 北京: 化学工业出版社, 2000: 53, 202, 250. |
XU G Y . Handbook of pharmaceutical intermediates (volume 1)[M]. Beijing: Chemical Industry Press, 2000: 53, 202, 250. | |
3 | GALLEZOT P , RICHARD D . Selective hydrogenation of alpha beta-unsaturated aldehydes[J]. Catalysis Reviews: Science and Engineering, 1998, 40 (1/2): 81-126. |
4 | 唐坤 . 中间体化学工艺学[M]. 北京: 化学工业出版社, 1984: 153-186. |
TANG K . Intermediate chemical technology[M]. Beijing: Chemical Industry Press, 1984: 153-186. | |
5 | 奚若明, 张明国 . 中国化工医药产品大全(第一卷)[M]. 北京: 科学出版社, 1991: 197. |
XI R M , ZHANG M G . China chemical and pharmaceutical products encyclopedia (volume I)[M]. Beijing: Science Press, 1991: 197. | |
6 | 徐克勋 . 精细有机化工原料及中间体手册(3)[M]. 北京: 化学工业出版社, 1998: 151-161. |
XU K X . Handbook of fine organic chemical materials and intermediates (3)[M]. Beijing: Chemical Industry Press, 1998: 151-161. | |
7 | 任勇, 刘静, 华维一 . 3-氯-1-苯丙稀合成工艺研究[J]. 中国药物化学杂志, 1997, 7(3): 215-217. |
REN Y , LIU J , HUA W Y . Study on the synthesis of 3-chloro-1-phenylpropene[J]. Chinese Journal of Medicinal Chemistry, 1997, 7(3): 215-217. | |
8 | 邱志刚, 袁红霞 . 一种用于1,8-二硝基萘催化加氢制备1,8-二氨基萘的催化剂及其制备方法: CN102430416A[P]. 2012-05-02. |
QIU Z G , YUAN H X . A catalyst for the preparation of 1,8-diaminonaphthalene by catalytic hydrogenation of 1,8-dinitronaphthalene and its preparation method: CN102430416A[P]. 2012-05-02. | |
9 | 罗和安, 刘平乐, 刘丽娜, 等 . 一种1,5-二硝基萘加氢催化剂及其制备方法和应用: CN102172528A[P]. 2011-09-07. |
LUO H A , LIU P L , LIU L N , et al . 1,5-dinitronaphthalene hydrogenation catalyst and its preparation method and application: CN102172528A[P]. 2011-09-07. | |
10 | 倪伟, 汪学广, 盛瑶, 等 . 一种1,8-二硝基萘加氢催化剂及其制备方法: CN108686652A[P]. 2018-10-23. |
NI W , WANG X G , SHENG Y , et al . A 1,8-dinitronaphthalene hydrogenation catalyst and its preparation method: CN108686652A[P]. 2018-10-23. | |
11 | 刘平乐, 熊伟, 郝芳, 等 . 一种无金属加氢催化剂及其催化1,5-二硝基萘加氢反应的应用: CN105749954A[P]. 2016-07-13. |
LIU P L , XIONG W , HAO F , et al . A metal-free hydrogenation catalyst and its application for the hydrogenation of 1,5-dinitronaphthalene: CN105749954A[P]. 2016-07-13. | |
12 | 张伟, 孙建芝, 李明时, 等 . 一种二硝基萘催化加氢制备二氨基萘的方法: CN101575295[P]. 2009-11-11. |
ZHANG W , SUN J Z , LI M S , et al . A method for the preparation of diaminonaphthalene by catalytic hydrogenation of dinitronaphthalene: CN101575295[P]. 2009-11-11. | |
13 | 陈根生, 郜磊, 沙玲 . 1,5-和1,8-二氨基萘的合成方法及应用[J]. 河南化工, 1998(2): 35-36. |
CHEN G S , ZHAI L , SHA L . Synthesis and application of 1,5- and 1,8-diaminonaphthalene[J]. Journal of Henan Chemical Industry, 1998(2): 35-36. | |
14 | 严生虎, 李彦飞, 张跃, 等 . 1,5‑二硝基萘加氢催化剂的制备方法及应用: CN106238099A[P]. 2016-12-21. |
YAN S H , LI Y F , ZHANG Y , et al . Preparation method and application of 1,5-dinitronaphthalene hydrogenation catalyst: CN106238099A[P]. 2016-12-21. | |
15 | XIONG W , WANG K J , LIU X W , et al . 1,5-Dinitronaphthalene hydrogenation to 1,5-diaminonaphthaleneover carbon nanotube supported non-noble metal catalysts undermild conditions[J]. Applied Catalysis A: General, 2016, 514: 126-134. |
16 | ZAERA F . The surface chemistry of metal-based hydrogenation catalysis[J]. ACS Catalysis, 2017, 7: 4947-4967. |
17 | 张文斌 . 掺氮碳纳米管的制备及其催化硝基化合物加氢性能研究[D]. 湘潭: 湘潭大学, 2017. |
ZHANG W B . Nitrogen-doped carbon nanotubes preparation and their catalytic performance in nitro compounds hydrogenation reaction [D]. Xiangtan: Xiangtan University, 2017. | |
18 | KOZLOV A L , ZBARSKIJ V L , KHODOV N V , et al . Highly-porous honeycomb catalyst for processes of liquid-phase hydration: RU2333795C2[P]. 2008-09-20. |
19 | WOLF F , FISCHER H . Catalytic reduction of aromatic vitro compounds on noble metal-carbon support catalysts in the liquid phase. Ⅱ. Catalytic reduction of substituted aromatic vitro compounds [J]. Journal fuer Praktische Chemie (Leipzig), 1975, 317(2): 241-246. |
20 | WANG Y , RONG Z , WANG Y , et al . Ruthenium nanoparticles loaded on functionalized graphene for liquid-phase hydrogenation of fine chemicals: comparison with carbon nanotube[J]. Journal of Catalysis, 2016, 333: 8-16. |
21 | SUN Z , RONG Z , WANG Y , al te . Selective hydrogenation of cinnamaldehyde over Pt nanoparticles deposited on reduced graphene oxide[J]. RSC Advances, 2014, 4: 1874-1878. |
22 | JI X , NIU X , LI B , et al . Selective hydrogenation of cinnamaldehyde to cinnamal alcohol over platinum/graphene catalysts[J]. ChemCatChem, 2014, 6: 3246-3253. |
23 | GARCÍA-BORDEJÉ E , LIU Y , SU D S , et al . Hierarchically structured reactors containing nanocarbons for intensification of chemical reactions[J]. Journal of Materials Chemistry A, 2017, 5: 22408-22441. |
24 | TOEBES M L , NIJHUIS T A , HÁJEK J , et al . Support effects in hydrogenation of cinnamaldehyde over carbon nanofiber-supported platinum catalysts: kinetic modeling[J]. Chemical Engineering Science, 2005, 60: 5682-5695. |
25 | JUNG A , JESS A , SCHUBERT T , et al . Performance of carbon nanomaterial (nanotubes and nanofibres) supported platinum and palladium catalysts for the hydrogenation of cinnamaldehyde and of 1-octyne[J]. Applied Catalysis A: General, 2009, 362: 95-105. |
26 | NIE R , MIAO M , DU W , et al . Selective hydrogenation of CC bond over N-doped reduced graphene oxides supported Pd catalyst[J]. Appl. Catal. BEnviron., 2016, 180: 607-613. |
27 | PLOMP A J , VUORI H , KRAUSE A O I , et al . Particle size effects for carbon nanofiber supported platinum and ruthenium catalysts for the selective hydrogenation of cinnamaldehyde[J]. Appl. Catal. AGen., 2008, 351: 9-15. |
28 | WANG Y , LENG W , GAO Y , et al . Thermo-sensitive polymer-grafted carbon nanotubes with temperature-controlled phase transfer behavior between water and a hydrophobic ionic liquid[J]. ACS Appl. Mater. Interfaces, 2014, 6: 4143-4148. |
29 | CHEN A , QI J , ZHAO Q , et al . Thermo-sensitive graphene supported gold nanocatalyst: synthesis characterization and catalytic performance[J]. RSC Adv., 2013, 3: 8973-8977. |
30 | QI J , LV W , ZHANG G , et al . A graphene-based smart catalytic system with superior catalytic performances and temperature responsive catalytic behaviors[J]. Nanoscale, 2013, 5: 6275-6279. |
31 | SUI X, QI C , HEMPENIUS M A , et al . Probing the collapse dynamics of poly(N-isopropylacrylamide) brushes by AFM: effects of co-nonsolvency and grafting densities[J]. Small, 2011, 7: 1440-1447. |
32 | LIU F , SUN T , JIANG L , et al . Controllable water permeation on a poly(N-isopropylacrylamide)-modified nanostructured copper mesh film[J]. Langmuir, 2007, 23: 327-331. |
33 | HAPIOT F , MENUEL S , MONFLIER E . Thermoresponsive hydrogels in catalysis[J]. ACS Catal., 2013, 3: 1006-1010. |
34 | DONG Y , WANG Q , WANG J , et al . Temperature responsive copolymer as support for metal nanoparticle catalyst: a recyclable catalytic system[J]. Reac. Funct. Polym., 2017, 112: 60-67. |
35 | FAN M , LONG Y , ZHU Y , et al . Two-dimensional covalent-organic-framework-derived nitrogen-rich carbon nanosheets modified with small Pd nanoparticles for the hydrodechlorination of chlorophenols and hydrogenation of phenol [J]. Appl. Catal. AGen., 2018, 568: 130-138. |
36 | CUI X , LONG Y , ZHOU X , et al . Pd doped Ni nanoparticles modified N-doped carbon nanocatalyst with high Pd atom utilization for transfer hydrogenation of nitroarenes[J]. Green Chem., 2018, 20: 1121-1130. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[3] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[4] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
[5] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[6] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[7] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[8] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing biofuels from soapstock via pyrolysis and subsequent catalytic vapor-phase hydrotreating process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2874-2883. |
[9] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
[10] | XU Xian, CUI Louwei, LIU Jie, SHI Junhe, ZHU Yonghong, LIU Jiaojiao, LIU Tao, ZHENG Hua’an, LI Dong. Effect of raw material composition on the development of semicoke mesophase structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2343-2352. |
[11] | LI Ling, MA Chaofeng, LU Chunshan, YU Wanjin, SHI Nengfu, JIN Jiamin, ZHANG Jianjun, LIU Wucan, LI Xiaonian. Progress on the synthesis of 1,1,2-trifluoroethene and the catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1822-1831. |
[12] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[13] | XIAO Yaoxin, ZHANG Jun, HU Sheng, SHAN Rui, YUAN Haoran, CHEN Yong. Cu-Zn catalyzed hydrogenation of furfural with methanol as hydrogen donor [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1341-1352. |
[14] | ZHANG Mengxu, WANG Hongqin, LI Jin, AN Nihong, DAI Yunsheng, QIAN Yin, SHEN Yafeng. Preparation of PtSn/MgAl2O4-sheet catalyst and its PDH reaction performance [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1365-1372. |
[15] | XUE Bo, YANG Tingting, WANG Xuefeng. Research progress of polyaniline/carbon nanotube gas sensing materials [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1448-1456. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |