1 |
SUBIA B , KUNDUJ, KUNDU S C , et al . Biomaterial scaffold fabrication techniques for potential tissue engineering applications[J]. Tissue Engineering, 2010, 12(3): 142-157.
|
2 |
WANG C C , YANG K C , LIN K H , et al . A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology[J]. Biomaterials, 2011, 32(29): 7118-7126.
|
3 |
刘清宇, 王富友, 杨柳 . 关节软骨组织工程支架的研究进展[J]. 中国修复重建外科杂志, 2012(10): 1247-1250.
|
|
LIU Q Y , WANG F Y , YANG L . Research progress of articular cartilage scaffold for tissue engineering[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2012(10): 1247-1250.
|
4 |
XU Y , GUO X , YANG S , et al . Construction of bionic tissue engineering cartilage scaffold based on 3D printing and oriented frozen technology[J]. Journal of Biomedical Materials Research Part A, 2018, 106(6): 1664-1676.
|
5 |
CHAN B P , LEONG K W . Scaffolding in tissue engineering: general approaches and tissue-specific considerations[J]. European Spine Journal, 2008, 17(s4): 467-479.
|
6 |
O'BRIEN F J . Biomaterials & scaffolds for tissue engineering[J]. Materials Today, 2011, 14(3): 88-95.
|
7 |
CARLETTI E , MOTTA A , MIGLIARESI C . Scaffolds for tissue engineering and 3D cell culture[J]. Methods in Molecular Biology, 2011, 695: 17.
|
8 |
林智军, 王万明 . 组织工程软骨生物支架材料研究新进展[J]. 中国组织工程研究, 2007, 11(18): 3625-3628.
|
|
LIN Z J , WANG W M . Latest progress in biological scaffold materials for tissue engineered cartilage[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2007, 11(18): 3625-3628.
|
9 |
王春晖, 贺娇娇, 王思涵,等 . 静电纺丝纤维支架在软骨组织重建中的设计应用[J]. 海南医学, 2016, 27(19): 3197-3199.
|
|
WANG C H , HE J J , WANG S H , et al . Application of electrospinning technology in the cartilage tissue engineering[J]. Hainan Medical Journal, 2016, 27(19): 3197-3199.
|
10 |
KIM B S , MOONEY D J . Development of biocompatible synthetic extracellular matrices for tissue engineering[J]. Trends in Biotechnology, 1998, 16(5): 224.
|
11 |
WHANG K , GOLDSTICK T K , HEALY K E , et al . A biodegradable polymer scaffold for delivery of osteotropic factors[J]. Biomaterials, 2000, 21(24): 2545-2551.
|
12 |
MIKOS A G , BAO Y , CIMA L G , et al . Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation[J]. Journal of Biomedical Materials Research, 2010, 27(2): 183-189.
|
13 |
MOONEY D J , MAZZONI C L , BREUER C , et al . Stabilized polyglycolic acid fibre-based tubes for tissue engineering[J]. Biomaterials, 1996, 17(2): 115-124.
|
14 |
SHERIDAN M H , SHEA L D , PETERS M C , et al . Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery[J]. Journal of Controlled Release, 2000, 64(1): 91-102.
|
15 |
MIKOS A G , THORSEN A J , CZERWONKA L A , et al . Preparation and characterization of poly(L-lactic acid) foams[J]. Polymer, 1994, 35(5): 1068-1077.
|
16 |
吴林波, 丁建东 . 组织工程三维多孔支架的制备方法和技术进展[J]. 功能高分子学报, 2003, 16(1): 91-96.
|
|
WU L B , DING J D . Advances in fabrication methodology and technology of three-dimensional porous scaffolds for tissue engineering[J]. Journal of Functional Polymers, 2003, 16(1): 91-96.
|
17 |
PANG L , HAO W , JIANG M , et al . Bony defect repair in rabbit using hybrid rapid prototyping polylactic-co-glycolic acid/ β-tricalciumphosphate collagen I/apatite scaffold and bone marrow mesenchymal stem cells[J]. Indian Journal of Orthopaedics, 2013, 47(4): 388-394.
|
18 |
PARK S H , PARK D S , SHIN J W , et al . Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA[J]. Journal of Materials Science: Materials in Medicine, 2012, 23(11): 2671-2678.
|
19 |
JIANG C P , CHEN Y Y , HSIEH M F . Biofabrication and in vitro study of hydroxyapatite/mPEG-PCL-mPEG scaffolds for bone tissue engineering using air pressure-aided deposition technology[J]. Materials Science & Engineering C:Materials for Biological Applications, 2013, 33(2): 680-690.
|
20 |
方淑慧 . 骨软骨一体化再生支架3D打印复合成形的快速调压供料系统设计与实现[D]. 上海: 上海大学, 2013.
|
|
FANG S H . A rapid pressure-regulated feeding system for 3D printing composite forming for osteochondral integrated regenerated scaffolds[D]. Shanghai: Shanghai University, 2013.
|
21 |
HUTMACHER D W , DALTON P D . Melt electrospinning[J]. Chemistry: An Asian Journal, 2011, 6(1): 44-56.
|
22 |
YANG G H , MUN F, KIM G H . Direct electrospinning writing for producing 3D hybrid constructs consisting of microfibers and macro-struts for tissue engineering[J]. Chemical Engineering Journal, 2016, 288: 648-658.
|
23 |
DALTON P D , JOERGENSEN N T , GROLL J , et al . Patterned melt electrospun substrates for tissue engineering[J]. Biomedical Materials, 2008, 3(3): 034109.
|
24 |
MUERZA-CASCANTE M L , HAYLOCK D , HUTMACHER D W , et al . Melt electrospinning and its technologization in tissue engineering[J]. Tissue Engineering Part B: Reviews, 2015, 21(2): 187-202.
|
25 |
HRYNEVICH A , B Ş ELCI , HAIGH J N , et al . Dimension-based design of melt electrowritten scaffolds[J]. Small, 2018, 14(22): 1800232.
|
26 |
DETTA N , BROWN T D , EDIN F K , et al . Melt electrospinning of polycaprolactone and its blends with poly(ethylene glycol)[J]. Polymer International, 2010, 59(11): 1558-1562.
|