Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (12): 5442-5448.DOI: 10.16085/j.issn.1000-6613.2019-0421
• Materials science and technology • Previous Articles Next Articles
Hongzhi WANG(),Jun LI,Suwei YAO,Weiguo ZHANG()
Received:
2019-03-20
Online:
2019-12-05
Published:
2019-12-05
Contact:
Weiguo ZHANG
通讯作者:
张卫国
作者简介:
王宏智(1973—),男,博士,副教授,研究方向为半导体光催化。E-mail:CLC Number:
Hongzhi WANG,Jun LI,Suwei YAO,Weiguo ZHANG. Synthesis and photocatalytic properties of pn-type Cu2O-WO3[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5442-5448.
王宏智,李骏,姚素薇,张卫国. pn型Cu2O-WO3的制备及光催化性能[J]. 化工进展, 2019, 38(12): 5442-5448.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0421
催化材料 | 反应速率常数k/h-1 | 线性相关系数R |
---|---|---|
Cu2O | 0.07722 | 0.99129 |
WO3 | 0.03479 | 0.99651 |
Cu2O-WO3 | 0.22958 | 0.99198 |
催化材料 | 反应速率常数k/h-1 | 线性相关系数R |
---|---|---|
Cu2O | 0.07722 | 0.99129 |
WO3 | 0.03479 | 0.99651 |
Cu2O-WO3 | 0.22958 | 0.99198 |
材料 | 光源 | 光降解率/% | 参考文献 |
---|---|---|---|
Cu2O-WO3 | 500W Xe灯 | 90.6 | 本文 |
15%g-C3N4/LaFeO3 | 200W Xe灯 | 58.4 | [ |
g-C3N4/Fe3O4/NiWO4 | 50W LED灯 | 87 | [ |
N-doped KTiNbO5/g-C3N4 | 500W Xe灯 | 89.9 | [ |
Ag2CO3/Ag/WO3 | 300W Xe 灯 | 89.3 | [ |
TiO2 NTs/Cu2O | 500W Xe灯 | 61.83 | [ |
材料 | 光源 | 光降解率/% | 参考文献 |
---|---|---|---|
Cu2O-WO3 | 500W Xe灯 | 90.6 | 本文 |
15%g-C3N4/LaFeO3 | 200W Xe灯 | 58.4 | [ |
g-C3N4/Fe3O4/NiWO4 | 50W LED灯 | 87 | [ |
N-doped KTiNbO5/g-C3N4 | 500W Xe灯 | 89.9 | [ |
Ag2CO3/Ag/WO3 | 300W Xe 灯 | 89.3 | [ |
TiO2 NTs/Cu2O | 500W Xe灯 | 61.83 | [ |
1 | FU L, CAI W, WANG A, et al. Photocatalytic hydrogenation of nitrobenzene to aniline over tungsten oxide-silver nanowires[J]. Materials Letters, 2015, 142: 201-203. |
2 | LI S, SHELAR D P, HOU C C, et al. WO3 nanospheres with improved catalytic activity for visible light induced cross dehydrogenative coupling reactions[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 363: 44-50. |
3 | 廖永进, 张亚平, 朱一闻, 等. WO3掺杂对V2O5/TiO2-SnO2催化剂NH3选择性催化还原NOx的影响[J]. 化工进展, 2017, 36(3): 951-956. |
LIAO Y J, ZHANG Y P, ZHU Y W, et al. Influence of WO3 doping on properties of V2O5/TiO2-SnO2 catalysts for selective catalytic reduction of NOx by NH3[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 951-956. | |
4 | MOON H G, SHIM Y S, KIM D H, et al. Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors[J]. Scientific Reports, 2012, 2: 588. |
5 | KAVITHA V S, SURESH S, CHALANA S R, et al. Luminescent Ta doped WO3 thin films as a probable candidate for excitonic solar cell applications[J]. Applied Surface Science, 2019, 466: 289-300. |
6 | WANG S, FAN W, LIU Z, et al. Advances on tungsten oxide based photochromic materials: strategies to improve their photochromic properties[J]. Journal of Materials Chemistry C, 2018, 6(2): 191-212. |
7 | LOU Z Z, ZHU M S, YANG X G, et al. Continual injection of photoinduced electrons stabilizing surface plasmon resonance of non-elemental-metal plasmonic photocatalyst CdS/WO3-x for efficient hydrogen generation[J]. Applied Catalysis B: Environmental, 2018, 226: 10-15. |
8 | WANG J, CHEN Z, ZHAI G, et al. Boosting photocatalytic activity of WO3 nanorods with tailored surface oxygen vacancies for selective alcohol oxidations[J]. Applied Surface Science, 2018, 462: 760-771. |
9 | ZHANG Q, DONG R, WU Y, et al. Light-driven Au-WO3@C janus micromotors for rapid photodegradation of dye pollutants[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4674-4683. |
10 | ZHOU H, WEN Z, LIU J, et al. Z-scheme plasmonic Ag decorated WO3/Bi2WO6 hybrids for enhanced photocatalytic abatement of chlorinated-VOCs under solar light irradiation[J]. Applied Catalysis B: Environmental, 2019, 242: 76-84. |
11 | TORABI M M, NASIRI M, ABEDINI E, et al. Enhanced gas-phase photocatalytic oxidation of n-pentane using high visible-light-driven Fe-doped WO3 nanostructures[J]. Journal of Environmental Chemical Engineering, 2018, 6(5): 6741-6748. |
12 | AN X, YU J C, WANG Y, et al. WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing[J]. Journal of Materials Chemistry, 2012, 22(17): 8525. |
13 | TIE L, YU C, ZHAO Y, et al. Fabrication of WO3 nanorods on reduced graphene oxide sheets with augmented visible light photocatalytic activity for efficient mineralization of dye[J]. Journal of Alloys and Compounds, 2018, 769: 83-91. |
14 | XIAO T, TANG Z, YANG Y, et al. In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics[J]. Applied Catalysis B: Environmental, 2018, 220: 417-428. |
15 | MART NEZ-GARC A A, VENDRA V K, SUNKARA S, et al. Tungsten oxide-coated copper oxide nanowire arrays for enhanced activity and durability with photoelectrochemical water splitting[J]. Journal of Materials Chemistry A, 2013, 1(48): 15235. |
16 | SHARMA K, MAITI K, KIM N H,et al. Green synthesis of glucose-reduced graphene oxide supported Ag-Cu2O nanocomposites for the enhanced visible-light photocatalytic activity[J]. Composites Part B: Engineering, 2018, 138: 35-44. |
17 | HUANG H, ZHANG J, JIANG L, et al. Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B[J]. Journal of Alloys and Compounds, 2017, 718: 112-115. |
18 | JAMALI S, MOSHAII A. Improving photo-stability and charge transport properties of Cu2O/CuO for photo-electrochemical water splitting using alternate layers of WO3 or CuWO4 produced by the same route[J]. Applied Surface Science, 2017, 419: 269-276. |
19 | 龙丹, 周俊伶, 时洪民, 等. 氧化亚铜光催化剂性能提升及增强机制的研究进展[J]. 化工进展, 2019, 38(6): 2756-2767. |
LONG D, ZHOU J L, SHI H M, et al. Research progress on the improved performance of cuprous oxide photocatalyst and its enhancement mechanism[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2756-2767. | |
20 | 付星晨, 颜德健, 刘冀锴. 基于氧化亚铜光电极的制备及其光电化学性能的研究进展[J]. 化工进展, 2018, 37(1): 140-148. |
FU X C, YAN D J, LIU J K. Research progress of fabrication and photoelectrochemical properties based on Cu2O photoelectrodes[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 140-148. | |
21 | GONG H, ZHANG Y, CAO Y, et al. Pt@Cu2O/WO3 composite photocatalyst for enhanced photocatalytic water oxidation performance[J]. Applied Catalysis B: Environmental, 2018, 237: 309-317. |
22 | SHI W, GUO X, CUI C, et al. Controllable synthesis of Cu2O decorated WO3 nanosheets with dominant (001) facets for photocatalytic CO2 reduction under visible-light irradiation[J]. Applied Catalysis B: Environmental, 2019, 243: 236-242. |
23 | HU C C, NIAN J N, TENG H. Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3[J]. Solar Energy Materials and Solar Cells, 2008, 92(9): 1071-1076. |
24 | 黄颖, 闫常峰, 郭常青, 等. 半导体Z反应光解水制氢的光能转换效率及研究进展[J]. 化工进展, 2014, 33(12): 3221-3229. |
HUANG Y, YANG C F, GUO C Q, et al. Photo conversion efficiency of and research advance in semiconductor Z-scheme photocatalytic water splitting for hydrogen production[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3221-3229. | |
25 | 庄朋强, 肖占文, 朱向东, 等. 钽阳极氧化膜的半导体性研究[J]. 电子元件与材料, 2011, 30(8): 35-39. |
ZHUANG P Q, XIAO Z W, ZHU X D, et al. Study on semiconductor properties of anodic oxide films on tantalum[J]. Electronic Components & Materials, 2011, 30(8): 35-39. | |
26 | ZHANG J, MA H, LIU Z. Highly efficient photocatalyst based on all oxides WO3/Cu2O heterojunction for photoelectrochemical water splitting[J]. Applied Catalysis B: Environmental, 2017, 201: 84-91. |
27 | ZHOU Z, WU Z, XU Q, et al. A solar-charged photoelectrochemical wastewater fuel cell for efficient and sustainable hydrogen production[J]. Journal of Materials Chemistry A, 2017, 5(48): 25450-25459. |
28 | FANG H, CAO X, YU J, et al. Preparation of the all-solid-state Z-scheme WO3/Ag/AgCl film on glass accelerating the photodegradation of pollutants under visible light[J]. Journal of Materials Science, 2018, 54(1): 286-301. |
29 | YE Y, YANG H, WANG X, et al. Photocatalytic, Fenton and photo-Fenton degradation of RhB over Z-scheme g-C3N4/LaFeO3 heterojunction photocatalysts[J]. Materials Science in Semiconductor Processing, 2018, 82: 14-24. |
30 | MOUSAVI M, HABIBI-YANGJEH A. Integration of NiWO4 and Fe3O4 with graphitic carbon nitride to fabricate novel magnetically recoverable visible-light-driven photocatalysts[J]. Journal of Materials Science, 2018, 53(12): 9046-9063. |
31 | LIU C, ZHU H, ZHU Y, et al. Ordered layered N-doped KTiNbO5/g-C3N4 heterojunction with enhanced visible light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2018, 228: 54-63. |
32 | YUAN X, JIANG L, CHEN X, et al. Highly efficient visible-light-induced photoactivity of Z-scheme Ag2CO3/Ag/WO3 photocatalysts for organic pollutant degradation[J]. Environmental Science: Nano, 2017, 4(11): 2175-2185. |
33 | WANG Q, SUN C, LIU Z, et al. Ultrasound-assisted successive ionic layer adsorption and reaction synthesis of Cu2O cubes sensitized TiO2 nanotube arrays for the enhanced photoelectrochemical performance[J]. Materials Research Bulletin, 2019, 111: 277-283. |
34 | MINGGU L J, NG K H, KADIR H A, et al. Bilayer n-WO3/p-Cu2O photoelectrode with photocurrent enhancement in aqueous electrolyte photoelectrochemical reaction[J]. Ceramics International, 2014, 40(10): 16015-16021. |
35 | WEI S, MA Y, CHEN Y, et al. Fabrication of WO3/Cu2O composite films and their photocatalytic activity[J]. Journal of Hazardous Materials, 2011, 194: 243-249. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |