1 |
黄学杰 . 电动汽车动力电池技术研究进展[J]. 科技导报, 2016, 34(6): 28-31.
|
|
HUANG X J . An overview of EVs battery technologies[J]. Science & Technology Review, 2016, 34(6): 28-31.
|
2 |
华政, 梁风, 姚耀春 . 电动汽车电池的发展现状与趋势[J]. 化工进展, 2017, 36(8): 2874-2881.
|
|
HUA Z , LIANG F , YAO Y C . Status and development trend for battery of electric vehicles[J]. Chemical Industry and Engineering Progress,2017, 36(8): 2874-2881.
|
3 |
WANG A , KADAM S , LI H , et al . Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries[J]. npj Computational Materials, 2018, 4(15): 1-25.
|
4 |
黄杰, 凌仕刚, 王雪龙, 等 . 锂离子电池基础科学问题——计算方法[J]. 储能科学与技术, 2015, 4(2): 215-230.
|
|
HUANG J , LING S G , WANG X L , et al . Fundamental scientific aspects of lithium ion batteries (ⅩⅣ)—calculation methods[J]. Energy Storage Science and Technology, 2015, 4(2): 215-230.
|
5 |
WANG K , XING L , ZHU Y , et al . A comparative study of Si-containing electrolyte additives for lithium ion battery: which one is better and why is it better[J]. Journal of Power Sources, 2017, 342: 677-684.
|
6 |
RAKHI R , SURESH C H . A DFT study on 1,4-dihydro-1,4-azaborinine annulated linear polyacenes: absorption spectra, singlet-triplet energy gap, aromaticity, and HOMO-LUMO energy modulation[J]. Journal of Computational Chemistry, 2017, 38(26): 2232-2240.
|
7 |
CUI W , LANSAC Y , LEE H, et al . Lithium ion solvation by ethylene carbonates in lithium-ion battery electrolytes, revisited by density functional theory with the hybrid solvation model and free energy correction in solution[J]. Physical Chemistry Chemical Physics, 2016, 18: 23607-23612.
|
8 |
WANG Y , XING L , TANG X , et al . Oxidative stability and reaction mechanism of lithium bis(oxalate)borate as a cathode film-forming additive for lithium ion batteries[J]. RSC Advances, 2014, 4: 33301-33306.
|
9 |
CHEN J H , HE L M , WANG R L . Connection of DFT molecular orbital eigenvalues with the observable oxidation potentials/oxidation energies[J]. The Journal of Physical Chemistry A, 2013, 117(24): 5132-5139.
|
10 |
LIU Q , MU D , WU B , et al . Theoretical studies of the reduction of cyclic esters on the anode interface of lithium batteries[J]. Journal of the Electrochemical Society, 2017, 164(13): A3144-A3153.
|
11 |
ZHENG X , WANG X , CAI X , et al . Constructing a protective interface film on layered lithium-rich cathode using an electrolyte additive with special molecule structure[J]. ACS Applied Materials & Interfaces, 2016, 8(44): 30116-30125.
|
12 |
LEGGESSE E G , LIN R T , TENG T F , et al . Oxidative decomposition of propylene carbonate in lithium ion batteries: a DFT study[J]. The Journal of Physical Chemistry A, 2013, 117: 7959-7969.
|
13 |
CAR R, PARRINELLO M . Unified approach for molecular dynamics and density-functional theory[J]. Physical Review Letters, 1985, 55(22): 2471-2474.
|
14 |
KOZAWA T , HIROBE D , UEHARA K , et al . Low-temperature synthesis of LiNi0.5Mn1.5O4 grains using a water vaporassisted solid-state reaction[J]. Journal of Solid State Chemistry, 2018, 263: 94-99.
|
15 |
ZHOU Z F , CUI X L , ZHANG H-M , et al . Studies on Co-oxidation resistances of electrolytes based on sulfolane and lithium bis(oxalato)borate[J]. Russian Journal of Electrochemistry, 2017, 53(4): 352-358.
|
16 |
WU X , ROHMAN F , MELEDINA M , et al . Analysis of the effects of different carbon coating strategies on structure and electrochemical behavior of LiCoPO4 material as a high-voltage cathode electrode for lithium ion batteries[J]. Electrochimica Acta, 2018, 279: 108-117.
|
17 |
LIU D , ZHU W , KIM C, et al . High-energy lithium-ion battery using substituted LiCoPO4: from coin type to 1 Ah cell[J]. Journal of Power Sources, 2018, 388: 52-56.
|
18 |
LONGO R C , LIANG C , KONG F , et al . Core-shell nanocomposites for improving the structural stability of Li-rich layered oxide cathode materials for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10: 19226-19234.
|
19 |
ZUO X , ZHAO M , MA X, et al . Effect of diphenyl disulfide as an additive on the electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2/graphite batteries at elevated temperature[J]. Electrochimica Acta, 2017, 245: 705-714.
|
20 |
ZHAO W , JI Y , ZHANG Z , et al . Recent advances in the research of functional electrolyte additives for lithium-ion batteries[J]. Current Opinion in Electrochemistry, 2017, 6(1): 84-91.
|
21 |
DELP S A , BORODIN O , OLGUIN M , et al . Importance of reduction and oxidation stability of high voltage electrolytes and additives[J]. Electrochimica Acta, 2016, 209: 498-510.
|
22 |
QIN Z , B B H, DUAN B , et al . Tributyl borate as a novel electrolyte additive to improve high voltage stability of lithium cobalt oxide in carbonate-based electrolyte[J]. Electrochimica Acta, 2018, 276: 412-416.
|
23 |
LI J , XING L , CHEN J , et al . Improving high voltage interfacial and structural stability of layered lithium-rich oxide cathode by using a boracic electrolyte additive[J]. Journal of the Electrochemical Society, 2016, 163(10): A2258-A2264.
|
24 |
WU F , ZHOU H , BAI Y , et al . Toward 5V Li-ion batteries: quantum chemical calculation and electrochemical characterization of sulfone-based high-voltage electrolytes[J]. ACS Applied Materials & Interfaces, 2015, 7(27): 15098-15107.
|
25 |
ZHANG Z C , HU L , WU H M , et al . Fluorinated electrolytes for 5V lithium-ion battery chemistry[J]. Energy & Environmental Science, 2013, 6(6): 1806-1810.
|
26 |
XING L , BORODIN O , SMITH G D , et al . Density functional theory study of the role of anions on the oxidative decomposition reaction of propylene carbonate[J]. The Journal of Physical Chemistry A, 2011, 115(47): 13896-13905.
|
27 |
BORODIN O , JOW T R . Quantum chemistry studies of the oxidative stability of carbonate, sulfone and sulfonate-based electrolytes doped with BF4 -,PF6 - anions[J]. ECS Transactions, 2011, 33(28): 77-84.
|
28 |
邢丽丹, 杨茹, 李伟善 . 密度泛函理论方法研究锂离子电池电解液体系分子-离子结构[J]. 电化学, 2014, 20(6): 547-552.
|
|
XING L D , YANG R , LI W S , et al ., Density functional theory study on the structures of solvent-ion in the electrolyte of lithium ion battery[J]. Journal of Electrochemistry, 2014, 20(6): 547-552.
|
29 |
BHATT M D , CHO M, CHO K . Interaction of Li+ ions with ethylene carbonate (EC): density functional theory calculations[J]. Applied Surface Science, 2010, 257(5): 1463-1468.
|
30 |
BORODIN O , BEHL W , JOW T R . Oxidative stability and initial decomposition reactions of carbonate, sulfone, and alkyl phosphate-based electrolytes[J]. The Journal of Physical Chemistry C, 2013, 117(17): 8661-8682.
|
31 |
GAUTHIER M , CARNEY T J , GRIMAUD A , et al . Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights[J]. The Journal of Physical Chemistry Letters, 2015, 6(22): 4653-4672.
|
32 |
HAYASHI K , NEMOTO Y , TOBISHIMA S I , et al . Mixed solvent electrolyte for high voltage lithium metal secondary cells[J]. Electrochimica Acta, 1999, 44: 2337-2344.
|
33 |
XU K . Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618.
|
34 |
SHAO N , SUN X G , DAI S , et al . Electrochemical windows of sulfone-based electrolytes for high-voltage Li-ion batteries[J]. The Journal of Physical Chemistry B, 2011, 115(42): 12120-12125.
|
35 |
BHATT M D , O’DWYER C . Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes[J]. Physical Chemistry Chemical Physics, 2015, 17: 4799-4844.
|
36 |
WANG Y , XING L , LI W , et al . Why do sulfone-based electrolytes show stability at high voltages? Insight from density functional theory[J]. The Journal of Physical Chemistry Letters, 2013, 4(22): 3992-3999.
|
37 |
XING L , VATAMANU J , BORODIN O , et al . Electrode/electrolyte interface in sulfolane-based electrolytes for Li ion batteries: a molecular dynamics simulation study[J]. The Journal of Physical Chemistry C, 2012,116(45): 23871-23881.
|
38 |
凡俊田, 董陶, 张兰, 等 . 锂离子电池高压电解液研究进展[J]. 过程工程学报, 2018, 18(6): 1167-1177.
|
|
FAN J T , DONG T , ZHANG L , et al . Advances on high-voltage electrolyte of lithium ion batteries[J]. The Chinese Journal of Process Engineering, 2018, 18(6): 1167-1177.
|
39 |
KIM C K, KIM K, SHIN K , et al . Synergistic effect of partially fluorinated ether and fluoroethylene carbonate for high-voltage lithium-ion batteries with rapid chargeability and dischargeability[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 44161-44172.
|
40 |
HE M N , SU C-C , FENG Z X , et al . High voltage LiNi0.5Mn0.3Co0.2O2/graphite cell cycled at 4.6V with a FEC/HFDEC-based electrolyte[J]. Advanced Energy Materials, 2017, 7: 1700109.
|
41 |
SU C C , HE M N , REDFERN P C , et al . Oxidatively stable fluorinated sulfone electrolytes for high voltage high energy lithium-ion battery[J]. Energy & Environmental Science, 2017, 10(4): 900-904.
|
42 |
李放放, 陈仕谋 . 高压锂离子电池电解液添加剂研究进展[J]. 储能科学与技术, 2016, 5(4): 436-442.
|
|
LI F F , CHEN S M . Research progress on electrolyte additives for high voltage lithium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(4): 436-442.
|
43 |
ONG S P, ANDREUSSI O , WU Y , et al . Electrochemical windows of room-temperature ionic liquids from molecular dynamics and density functional theory calculations[J]. Chemistry of Materials, 2011, 23(11): 2979-2986.
|
44 |
ANGENENDT K , JOHANSSON P . Ionic liquid structures from large density functional theory calculations using mindless configuration[J]. The Journal of Physical Chemistry C, 2010, 114: 20577-20582.
|
45 |
ANGENENDT K , JOHANSSON P . Ionic liquid based lithium battery electrolytes: charge carriers and interactions derived by density functional theory calculations[J]. The Journal of Physical Chemistry B, 2011, 115(24): 7808-7813.
|
46 |
LOU S , QU X , MA Y, et al . Unravelling the enhanced high-temperature performance of lithium-rich oxide cathode with methyl diphenylphosphinite as electrolyte additive[J]. ChemElectroChem, 2018,5: 1569-1575.
|
47 |
HAN Y K , YOOA J , YIM T . Computational screening of phosphite derivatives as high-performance additives in high-voltage Li-ion batteries[J]. RSC Advances, 2017,7: 20049-20056.
|
48 |
LI Y , WAN S , VEITH G M , et al . A novel electrolyte salt additive for lithium-ion batteries with voltages greater than 4.7V[J]. Advanced Energy Materials, 2017,7(4): 1601397-1601403.
|
49 |
JI Y , ZHANG Z , GAO M , et al . Electrochemical behavior of suberonitrile as a high-potential electrolyte additive and Co-solvent for Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material[J]. Journal of the Electrochemical Society, 2015,162(4): A774-A780.
|
50 |
ZHI H , XING L , ZHENG X , et al . Understanding how nitriles stabilize electrolyte/electrode interface at high voltage[J]. The Journal of Physical Chemistry Letters, 2017, 8: 6048-6052.
|
51 |
项宏发, 林敏, 郑浩, 等 . 环状磷酸酯作为电解液多功能添加剂的量子化学计算研究[J]. 合肥工业大学学报, 2017,40(9): 1181-1185.
|
|
XIANG H F , LIN M , ZHENG H , et al. Quantum chemicla calculation on cyclic phosphate compounds as multifunctional electrolyte additives[J]. Journal of Hefei University of Technology, 2017, 40(9):1181-1185.
|
52 |
PARK M H , LEE Y S, LEE H, et al . Low Li+ binding affinity: an important characteristic for additives to form solid electrolyte interphases in Li-ion batteries[J]. Journal of Power Sources, 2011,196(11): 5109-5114.
|
53 |
LI Z D , ZHANG Y C , XIANG H F , et al . Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J]. Journal of Power Sources, 2013,240: 471-475.
|
54 |
PRAKASH REDDY V , SINN E , HOSMANE N . Boron based fluoride anion receptors: electrochemical and sensory applications[J]. Journal of Organometallic Chemistry, 2015, 798: 5-12.
|
55 |
YANG X , LI J , XING L , et al . Stabilizing lithium manganese oxide/organic carbonate electrolyte interface with a simple boron-containing additive[J], Electrochimica Acta, 2017, 227: 24-32.
|
56 |
YAMADA Y , FURUKAWA K , SODEYAMA K , et al . Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136(13): 5039-5046.
|
57 |
AFROZ T , SEO D M, HAN S D , et al . Structural interactions within lithium salt solvates: acyclic carbonates and esters[J]. The Journal of Physical Chemistry C, 2015, 119(13): 7022-7027.
|
58 |
ZHENG X , HUANG T , PAN Y , et al . High-voltage performance of LiNi1/3Co1/3Mn1/3O2 /graphite batteries with di(methylsulfonyl) methane as a new sulfone-based electrolyte additive[J]. Journal of Power Sources, 2015, 293: 196-202.
|
59 |
WANG H , SUN D , LI X , et al . Alternative multifunctional cyclic organosilicon as an efficient electrolyte additive for high performance lithium-ion batteries[J]. Electrochimica Acta, 2017, 254: 112-122.
|
60 |
LU W , XIONG S , PU W , et al . Carbonate-grafted polysilane as a new additive for elevated-temperature lithium-ion batteries[J]. ChemElectroChem, 2017, 4(8): 2012-2018.
|
61 |
HUANG W , XING L , ZHANG R , et al . A novel electrolyte additive for improving the interfacial stability of high voltage lithium nickel manganese oxide cathode[J]. Journal of Power Sources, 2015, 293: 71-77.
|