Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (07): 3253-3264.DOI: 10.16085/j.issn.1000-6613.2018-1808

• Materials science and technology • Previous Articles     Next Articles

Application of density functional theory in the design of high potential electrolyte

Nan LI1(),Guoqiang MA1(),Haiying CHE2,Zhimin JIANG1,Min SHEN1,Jingbo DONG1,Huichuang CHEN1,Zifeng MA2()   

  1. 1. Zhejiang Research Institute of Chemical Industry Ltd. , Hangzhou 310023, Zhejiang, China
    2. Shanghai Electrochemical Energy Device Research Center, Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2018-09-07 Online:2019-07-05 Published:2019-07-05
  • Contact: Guoqiang MA,Zifeng MA

密度泛函理论在高电压电解液设计中的应用

李南1(),马国强1(),车海英2,蒋志敏1,沈旻1,董经博1,陈慧闯1,马紫峰2()   

  1. 1. 浙江省化工研究院有限公司,浙江 杭州 310023
    2. 上海交通大学化学工程系,上海电化学能源器件工程技术研究中心,上海 200240
  • 通讯作者: 马国强,马紫峰
  • 作者简介:李南(1991—),女,硕士研究生,研究方向为锂离子电池电解液。E-mail:<email>linan15@sinochem.com</email>。
  • 基金资助:
    国家自然科学基金重点项目(21336003)

Abstract:

Based on the density function theory (DFT), quantum chemistry calculation provides a platform to design high voltage electrolytes. Gaussian software, developed for DFT application, has been successfully used in simulating the molecular structure of electrolytes, optimizing their solvation state and predicting the decomposition pathway and compositions of the products. By using the software, the time cost in research and development (R&D) can be greatly reduced. In this review, the recent progress of DFT in simulation of lithium-ion battery electrolyte was summarized. Furthermore, taking the R&D of high-voltage electrolyte as an example, we introduced the application of DFT in calculating the oxidation potential of the electrolytes, from which good agreement between theoretical calculation and experimental result was confirmed. Moreover, the application of DFT method was further introduced in the research for different solvents (e.g. sulfones, fluorinated carbonates and ionic liquids) and functional additives (e.g. phosphates, borates and nitriles) for high potential electrolytes. It is expected that with the improvement in kinetic theory and the optimization technique, many problems in simulation of concentrated electrolyte, solid-liquid interface mechanism, and etc. , would be solved imminently.

Key words: kinetic theory, computer simulation, electrochemistry, electrolyte, oxidation

摘要:

基于密度泛函理论的量子化学计算为高电压电解液的配方设计提供了理论基础。运用Gaussian软件可以有效模拟电解液中某一成分的分子构型和溶剂化状态,计算出化合物的分解路径与分解产物,进而大幅缩短电解液研发周期。本文回顾了近年来该计算方法在锂离子电池电解液研究中的相关进展,并以高电压电解液为例,介绍了该理论在溶剂氧化电位计算方面的应用,结合分子模型的优化,实现了计算值与实验值的基本统一。此外,详细阐述了砜类、氟类、离子液体等几种新型高电压溶剂和磷酸酯类、硼类、腈类等几种成膜添加剂的应用。相信今后随着动力学理论的完善和计算机技术的优化,该方法在高浓度电解液、固液界面作用机理等当前难以实现的理论模拟问题方面的应用指日可待。

关键词: 动力学理论, 计算机模拟, 电化学, 电解液, 氧化

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd