Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (06): 2835-2846.DOI: 10.16085/10.16085/j.issn.1000-6613.2018-1950
• Materials science and technology • Previous Articles Next Articles
Yuxuan XU1,2(),Jinian YANG2(),Shibin NIE1()
Received:
2018-09-06
Online:
2019-06-05
Published:
2019-06-05
Contact:
Jinian YANG,Shibin NIE
通讯作者:
杨继年,聂士斌
作者简介:
徐煜轩(1989—),男,硕士研究生。E-mail:<email>xuyuxuan_AUST@163.com</email>。
基金资助:
CLC Number:
Yuxuan XU, Jinian YANG, Shibin NIE. Functionalized nickel phyllosilicate and applications in magnetic, electrical and catalytic fields[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2835-2846.
徐煜轩, 杨继年, 聂士斌. 功能化层状硅酸镍在磁、电及催化领域的应用[J]. 化工进展, 2019, 38(06): 2835-2846.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/10.16085/j.issn.1000-6613.2018-1950
1 | BURATTIN P , CHE M , LOUIS C . Characterization of the Ni(II) phase formed on silica upon deposition-precipitation[J]. The Journal of Physical Chemistry B, 1997, 101(36): 7060-7074. |
2 | BURATTIN P , CHE M , LOUIS C . Molecular approach to the mechanism of deposition-precipitation of the Ni (II) phase on silica[J]. The Journal of Physical Chemistry B, 1998, 102(15): 2722-2732. |
3 | CHE M , CHENG Z X , LOUIS C . Nucleation and particle growth processes involved in the preparation of silica-supported nickel materials by a two-step procedure[J]. Journal of the American Chemical Society, 1995, 117(7): 2008-2018. |
4 | CHEN B H , CHAO Z S , HE H , et al . Towards a full understanding of the nature of Ni(II) species and hydroxyl groups over highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition-precipitation method[J]. Dalton Trans., 2016, 45(6): 2720-2739. |
5 | MIZUTANI T , FUKUSHIMA Y , OKADA A , et al . Synthesis of nickel and magnesium phyllosilicates with 1∶1 and 2∶1 layer structures[J]. Bulletin of the Chemical Society of Japan, 1990, 63(7): 2094-2098. |
6 | CLAUSE O , KERMAREC M , BONNEVIOT L , et al . Nickel(II) ion-support interactions as a function of preparation method of silica-supported nickel materials[J]. Journal of the American Chemical Society, 1992, 114(12): 4709-4717. |
7 | NARES R , RAMÍREZ J , GUTIÉRREZ-ALEJANDRE A , et al . Ni/Hβ-zeolite catalysts prepared by deposition-precipitation[J]. The Journal of Physical Chemistry B, 2002, 106(51): 13287-13293. |
8 | YANG Y , LIANG Q , LI J , et al . Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries[J]. Nano Research, 2011, 4(9): 882-890. |
9 | LU B , JU Y , ABE T, et al . Grafting Ni particles onto SBA-15, and their enhanced performance for CO2 methanation[J]. RSC Advances, 2015, 5(70): 56444-56454. |
10 | MASLENNIKOVA T P , GATINA E N . Hydrothermal synthesis of Ti-doped nickel hydrosilicates of various morphologies[J]. Russian Journal of Applied Chemistry, 2018, 91(2): 286-291. |
11 | LIU H , WANG H , SHEN J , et al . Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing CO x -free hydrogen from ammonia[J]. Applied Catalysis A: General, 2008, 337(2): 138-147. |
12 | SIVAIAH M V , PETIT S , BEAUFORT M F , et al . Nickel based catalysts derived from hydrothermally synthesized 1∶1 and 2∶1 phyllosilicates as precursors for carbon dioxide reforming of methane[J]. Microporous and Mesoporous Materials, 2011, 140(1-3): 69-80. |
13 | SIVAIAH M V , PETIT S , BARRAULT J , et al . CO2 reforming of CH4 over Ni-containing phyllosilicates as catalyst precursors[J]. Catalysis Today, 2010, 157(1-4): 397-403. |
14 | RICHARD-PLOUET M , VILMINOT S . Magnetic properties of two-dimensional triangular arrays of Ni ions in nickel phyllosilicates[J]. Journal of Materials Chemistry, 1998, 8(1): 131-137. |
15 | RICHARD-PLOUET M , VILMINOT S , GUILLOT M , et al . Canted antiferromagnetism in an organo-modified layered nickel phyllosilicate[J]. Chemistry of Materials, 2002, 14(9): 3829-3836. |
16 | DIMOS K , PANAGIOTOPOULOS I , TSOUFIS T , et al . Effect of [Fe(CN)6]4- substitutions on the spin-flop transition of a layered nickel phyllosilicate[J]. Langmuir, 2012, 28(27): 10289-10295. |
17 | TANG C , SHENG J , XU C , et al . Facile synthesis of reduced graphene oxide wrapped nickel silicate hierarchical hollow spheres for long-life lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19427-19432. |
18 | ZHANG Q , WANG M , ZHANG T , et al . A stable Ni/SBA-15 catalyst prepared by the ammonia evaporation method for dry reforming of methane[J]. RSC Advances, 2015, 5(114): 94016-94024. |
19 | YANG M , JIN P , FAN Y , et al . Ammonia-assisted synthesis towards a phyllosilicate-derived highly-dispersed and long-lived Ni/SiO2 catalyst[J]. Catalysis Science & Technology, 2015, 5(12): 5095-5099. |
20 | ZHANG C , YUE H , HUANG Z , et al . Hydrogen production via steam reforming of ethanol on phyllosilicate-derived Ni/SiO2: enhanced metal-support interaction and catalytic stability[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(1): 161-173. |
21 | WANG Z , ASHOK J , PU Z , et al . Low temperature partial oxidation of methane via BaBi0.05Co0.8Nb0.15O3- δ -Ni phyllosilicate catalytic hollow fiber membrane reactor[J]. Chemical Engineering Journal, 2017, 315: 315-323. |
22 | YAN L , LIU X , DENG J , et al . Molybdenum modified nickel phyllosilicates as a high performance bifunctional catalyst for deoxygenation of methyl palmitate to alkanes under mild conditions[J]. Green Chemistry, 2017, 19(19): 4600-4609. |
23 | KONG X , ZHU Y , ZHENG H , et al . Ni nanoparticles inlaid nickel phyllosilicate as a metal-acid bifunctional catalyst for low-temperature hydrogenolysis reactions[J]. ACS Catalysis, 2015, 5(10): 5914-5920. |
24 | ASHOK J , KATHIRASER Y , ANG M L, et al . Ni and/or Ni-Cu alloys supported over SiO2 catalysts synthesized via phyllosilicate structures for steam reforming of biomass tar reaction[J]. Catalysis Science & Technology, 2015, 5(9): 4398-4409. |
25 | ASHOK J , ANG M L, TERENCE P Z L , et al . Promotion of the water-gas-shift reaction by nickel hydroxyl species in partially reduced nickel-containing phyllosilicate catalysts[J]. ChemCatChem, 2016, 8(7): 1308-1318. |
26 | ZHAO B , CHEN Z , YAN X , et al . CO methanation over Ni/SiO2 catalyst prepared by ammonia impregnation and plasma decomposition[J]. Topics in Catalysis, 2017, 60(12-14): 879-889. |
27 | FUKUSHIMA Y , TANI M . An organic/inorganic hybrid layered polymer: methacrylate-magnesium (nickel) phyllosilicate[J]. Journal of the Chemical Society, Chemical Communications, 1995 (2): 241-242. |
28 | FONSECA M G DA , SILVA C R , BARONE J S , et al . Layered hybrid nickel phyllosilicates and reactivity of the gallery space[J]. Journal of Materials Chemistry, 2000, 10(3): 789-795. |
29 | FUKUSHIMA Y , TANI M . Synthesis of 2∶1 type 3-(methacryloxy) propyl magnesium (nickel) phyllosilicate[J]. Bulletin of the Chemical Society of Japan, 1996, 69(12): 3667-3671. |
30 | MELO J M A , PIRES C T G V M T , AIROLDI C . The influence of the leaving iodine atom on phyllosilicate syntheses and useful application in toxic metal removal with favorable energetic effects[J]. RSC Advances, 2014, 4(77): 41028-41038. |
31 | ALENCAR J M , OLIVEIRA F J V E , AIROLDI C , et al . Organophilic nickel phyllosilicate for reactive blue dye removal[J]. Chemical Engineering Journal, 2014, 236: 332-340. |
32 | LEHMANN T , WOLFF T , HAMEL C , et al . Physico-chemical characterization of Ni/MCM-41 synthesized by a template ion exchange approach[J]. Microporous and Mesoporous Materials, 2012, 151: 113-125. |
33 | CHEN B H , LIU W , LI A , et al . A simple and convenient approach for preparing core-shell-like silica@nickel species nanoparticles: highly efficient and stable catalyst for the dehydrogenation of 1,2-cyclohexanediol to catechol[J]. Dalton Trans, 2015, 44(3): 1023-1038. |
34 | RICHARD-PLOUET M , GUILLOT M , VILMINOT S , et al . HCP and FCC nickel nanoparticles prepared from organically functionalized layered phyllosilicates of nickel (II)[J]. Chemistry of Materials, 2007, 19(4): 865-871. |
35 | MELO M A , OLIVEIRA F J V E , AIROLDI C . Novel talc-like nickel phyllosilicates functionalized with ethanolamine and diethanolamine[J]. Applied Clay Science, 2008, 42(1/2): 130-136. |
36 | LI Z , KATHIRASER Y , ASHOK J , et al . Simultaneous tuning porosity and basicity of nickel@nickel-magnesium phyllosilicate core-shell catalysts for CO2 reforming of CH4 [J]. Langmuir, 2014, 30(48): 14694-14705. |
37 | BIAN Z , SURYAWINATA I Y , KAWI S . Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2016, 195: 1-8. |
38 | BIAN Z , KAWI S . Highly carbon-resistant Ni-Co/SiO2 catalysts derived from phyllosilicates for dry reforming of methane[J]. Journal of CO2 Utilization, 2017, 18: 345-352. |
39 | RICHARD A R , FAN M . Low-pressure hydrogenation of CO2 to CH3OH using Ni-In-Al/SiO2 catalyst synthesized via a phyllosilicate precursor[J]. ACS Catalysis, 2017, 7(9): 5679-5692. |
40 | JIANG B , LI L , BIAN Z , et al . Hydrogen generation from chemical looping reforming of glycerol by Ce-doped nickel phyllosilicate nanotube oxygen carriers[J]. Fuel, 2018, 222: 185-192. |
41 | QIU C , AI L H , JIANG J . Layered phosphate-incorporated nickel–cobalt hydrosilicates for highly efficient oxygen evolution electrocatalysis[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4492-4498. |
42 | ALBARAZI A , GÁLVEZ M E , COSTA P DA . Synthesis strategies of ceria-zirconia doped Ni/SBA-15 catalysts for methane dry reforming[J]. Catalysis Communications, 2015, 59: 108-112. |
43 | KORYTKOVA E , PIVOVAROVA L , DROZDOVA I , et al . Synthesis of nanotubular nickel hydrosilicates and nickel-magnesium hydrosilicates under hydrothermal conditions[J]. Glass Physics and Chemistry, 2005, 31(6): 797-802. |
44 | KORYTKOVA E , MASLOV A , PIVOVAROVA L , et al . Synthesis of nanotubular Mg3Si2O5(OH)4-Ni3Si2O5(OH)4 silicates at elevated temperatures and pressures[J]. Inorganic Materials, 2005, 41(7): 743-749. |
45 | MCDONALD A , SCOTT B , VILLEMURE G . Hydrothermal preparation of nanotubular particles of a 1∶1 nickel phyllosilicate[J]. Microporous and Mesoporous Materials, 2009, 120(3): 263-266. |
46 | ZHANG C , ZHU W , LI S , et al . Sintering-resistant Ni-based reforming catalysts obtained via the nanoconfinement effect[J]. Chemical Communications, 2013, 49(82): 9383-9385. |
47 | KRASILIN A A , SEMENOVA A S , KELLERMAN D G , et al . Magnetic properties of synthetic Ni3Si2O5(OH)4 nanotubes[J]. EPL (Europhysics Letters), 2016, 113(4): 47006. |
48 | GUI C , HAO S , LIU Y , et al . Carbon nanotube@layered nickel silicate coaxial nanocables as excellent anode materials for lithium and sodium storage[J]. Journal of Materials Chemistry A, 2015, 3(32): 16551-16559. |
49 | QIU C , JIANG J , AI L . When layered nickel-cobalt silicate hydroxide nanosheets meet carbon nanotubes: a synergetic coaxial nanocable structure for enhanced electrocatalytic water oxidation[J]. ACS Applied Materials & Interfaces, 2016, 8(1): 945-951. |
50 | CHEN X , HUANG Y , ZHANG K . Cobalt nanofibers coated with layered nickel silicate coaxial core-shell composites as excellent anode materials for lithium ion batteries[J]. Journal of Colloid and Interface Science, 2018, 513: 788-796. |
51 | WANG Q Q , QU J , LIU Y , et al . Growth of nickel silicate nanoplates on reduced graphene oxide as layered nanocomposites for highly reversible lithium storage[J]. Nanoscale, 2015, 7(40): 16805-16811. |
52 | ZHANG Y , ZHOU W , YU H , et al . Self-templated synthesis of nickel silicate hydroxide/reduced graphene oxide composite hollow microspheres as highly stable supercapacitor electrode material[J]. Nanoscale Research Letters, 2017, 12(1): 325. |
53 | ZHANG X Q , LI W C , HE B , et al . Ultrathin phyllosilicate nanosheets as anode materials with superior rate performance for lithium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(4): 1397-1402. |
54 | RODRIGUEZ-GOMEZ A , CABALLERO A . Identification of outer and inner nickel particles in a mesoporous support: how the channels modify the reducibility of Ni/SBA-15 catalysts[J]. ChemNanoMat, 2017, 3(2): 94-97. |
55 | OHTSUKA K , KOGA J , SUDA M , et al . Fabrication of metal-layer (nickel) silicate microcomposite particles by a surface-nucleated precipitation route[J]. Journal of the American Ceramic Society, 1989, 72(10): 1924-1930. |
56 | BURATTIN P , CHE M , LOUIS C . Metal particle size in Ni/SiO2 materials prepared by deposition-precipitation: influence of the nature of the Ni(Ⅱ) phase and of its interaction with the support[J]. The Journal of Physical Chemistry B, 1999, 103(30): 6171-6178. |
57 | NARES R , RAMÍREZ J , GUTIÉRREZ-ALEJANDRE A D , et al . Characterization and hydrogenation activity of Ni/Si(Al)-MCM-41 catalysts prepared by deposition-precipitation[J]. Industrial & Engineering Chemistry Research, 2009, 48(3): 1154-1162. |
58 | YANG Y , JIN R , SONG S , et al . Synthesis of flower-like nickel oxide/nickel silicate nanocomposites and their enhanced electrochemical performance as anode materials for lithium batteries[J]. Materials Letters, 2013, 93: 5-8. |
59 | FANG Q , XUAN S , JIANG W , et al . Yolk-like micro/nanoparticles with superparamagnetic iron oxide cores and hierarchical nickel silicate shells[J]. Advanced Functional Materials, 2011, 21(10): 1902-1909. |
60 | LI Z , KATHIRASER Y , KAWI S . Facile synthesis of high surface area yolk-shell Ni@Ni embedded SiO2 via Ni phyllosilicate with enhanced performance for CO2 reforming of CH4 [J]. ChemCatChem, 2015, 7(1): 160-168. |
61 | LI Z , KAWI S . Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4: influence of Ni precursors on structure, sintering, and carbon resistance[J]. Catalysis Science & Technology, 2018, 8(7): 1915-1922. |
62 | BIAN Z , KAWI S . Sandwich-like silica@Ni@silica multicore-shell catalyst for the low-temperature dry reforming of methane: confinement effect against carbon formation[J]. ChemCatChem, 2018, 10(1): 320-328. |
63 | DAS S, ASHOK J , BIAN Z , et al . Silica-ceria sandwiched Ni core-shell catalyst for low temperature dry reforming of biogas: coke resistance and mechanistic insights[J]. Applied Catalysis B: Environmental, 2018, 230: 220-236. |
64 | MAJEWSKI A J , WOOD J , BUJALSKI W . Nickel-silica core@shell catalyst for methane reforming[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14531-14541. |
65 | PARK J C , LEE H J, BANG J U , et al . Chemical transformation and morphology change of nickel-silica hybrid nanostructures via nickel phyllosilicates[J]. Chemical Communications, 2009, (47): 7345-7347. |
66 | MA B, CUI H , ZHAO C . A nickel-phyllosilicate core-echinus catalyst via a green and base additive free hydrothermal approach for hydrogenation reactions[J]. Chemical Communications, 2017, 53(75): 10358-10361. |
67 | KIM M, PARK J C , KIM A, et al . Porosity control of Pd@SiO2 yolk-shell nanocatalysts by the formation of nickel phyllosilicate and its influence on Suzuki coupling reactions[J]. Langmuir, 2012, 28(15): 6441-6447. |
[1] | WANG Shuaiqi, WANG Congxin, WANG Xuelin, TIAN Zhijian. Solvent-free rapid synthesis of ZSM-12 zeolite [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3561-3571. |
[2] | CHEN Fei, LIU Chengbao, CHEN Feng, QIAN Junchao, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Research progress on graphitic carbon nitride based materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2566-2576. |
[3] | CAI Jiangtao, HOU Liuhua, LAN Yujin, ZHANG Chenchen, LIU Guoyang, ZHU Youyu, ZHANG Jianlan, ZHAO Shiyong, ZHANG Yating. Preparation of pitch-based porous carbon materials and application in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1895-1906. |
[4] | LONG Yinying, YANG Jian, GUAN Min, YANG Yiluo, CHENG Zhengbai, CAO Haibing, LIU Hongbin, AN Xingye. Research progress of lignin-based materials in electrode materials for hybrid supercapacitors [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4855-4865. |
[5] | XU Hu, GUO Hongkai, CHAI Changsheng, HAO Xiangzhong, YANG Ziyuan, XU Weijun. Carbon fiber materials used for the electrode of electro-Fenton system: a critical review [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3707-3718. |
[6] | GUO Guanlun, LIU Rui, YU Yangyang, WANG Yun. Progress on carbon materials derived from waste plastic for supercapacitors [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 781-790. |
[7] | WANG Ce, WANG Guoqing, WANG Errui, WU Tianhao, YU Haijun. Synthesis and modification of lithium-ion battery cathode materials [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4998-5011. |
[8] | LI Yongjia, WEI Ruihong, LU Jinhua, YAO Yaochun. Preparation and performance of FePO4 precursor for LiFePO4 [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2227-2233. |
[9] | LIU Weibing, YE Bangce. Progress of synthetic biology research and biological manufacturing of actinomycetes polyketides [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1226-1237. |
[10] | CHEN Shaohua, CHEN Wenliang, DING Yi, ZHAO Donglin, XIE Fazhi, REN Qifang. Study on the structure and adsorption mechanism of three dimensional electrochemical modified electrode for dopamine response [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6135-6144. |
[11] | Zhiyuan GUO, Zhiyong JI, Huayan CHEN, Yabin SHI, Fan ZHANG, Yingying ZHAO, Jie LIU, Junsheng YUAN. Progress of electrode materials and electrode systems in electrochemical lithium extraction process [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2294-2303. |
[12] | Mingsheng LUO, Xuleng FENG, Dan SONG, Zhi YANG, Yatao WANG, Hongjuan LI. Effect of preparation methods on Fischer-Tropsch iron catalystsusing FeC2O4 [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2422-2429. |
[13] | Chengyu YE,Dong YAN,Anhui LU,Wencui LI. Lithium ion capacitors with organic electrolyte [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1283-1296. |
[14] | Cheng LIAN, Honglai LIU. Classic density functional theory for designing supercapacitors [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 244-260. |
[15] | Xiangqian ZHANG, Bin HE, Xiaoling DONG, Chengyu YE, Anhui LU. Design and synthesis of porous carbon materials for energy storage [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 404-420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |